

A-code documentation, 2025-May-06

	
A-code and where to get it

About A-code

A-code sources

Building games from source

Build types explained

Translating A-code into ANSI C

Creating game executables from derived C sources

Using advbld script (if you have bash)

Running A-code games

A-code language

A-code 12 reference

A-code parser

A-code texts

A-code vocabulary handling

A-code game internationalisation

Diving deeper

UNDO and REDO

Library mode interface

The context mechanism

Upward compatibility of games

Writing games in other languages

A-code debugging

Finally, some history

Differences between A-code styles

Language history, as I recall it.

A-code introduction

 Dave Platt developed the A-code language (not to be confused with the Level
 9 A-code system!) for writing his influential "Adventure 3" (a.k.a
 Adventure550) expansion of the original Crowther/Woods Adventure game. In
 doing so, he broke from the traditional format of Adventure and its expanded
 versions, relying on a custom executable processing a standard format data
 file.

 Though only a few games have ever been written in A-code, it is of some
 historical interest because of the influence of Adventure3. Personally, I
 regret that the language did not catch on – it is easy to write, is
 very readable and has some unusual, useful features. To the best of my
 knowledge this is the complete list of A-code games:

	Adventure3 (a.k.a. Adv550 or PLAT0550) Dave Platt 1980

	Adventure C01 (a.k.a. Adv580 or GOET0580) Mike Goetz 1982?

	Adventure4+ (a.k.a. Adv660 or ARNA0660) Mike Arnautov 1984?

	Adv770 (a.k.a. ARNA0770) Mike Arnautov 2003

 There are also a couple of A-code re-implementations of existing games:

	Roger Firth's "Cloak of Darkness" – Cloak
 by Mike Arnautov, 1999

	
 Crowther's & Woods's Adventure – Adv350 by Mike Arnautov, 2020

 This documentation describes the current version of A-code, which is still
 backward compatible with original A-code sources of all of the above games.
 Differences (both of implementation and of feature) between Platt's original
 version of the language and the current one are explained in the history
 sections of the document.

 I am profoundly grateful to Joan CiberSheep for teaching me how to create
 pdf and epub versions of this documentation and for assistense in scripting
 the task!

Language sources and documentation

The A-code language sources tarball

acode-12.91.tgz contains the following basic directory hierarchy:
	
 acode-12.91
 │
 ┌────────────────────┼───────────────────┐
 │ │ │
 acdc-12.49 bin kernel-12.91
 │
 extras

 All contents of this tarball are licenced under the GPL3 (or later) –
 see the LICENCE file in the top directory of the tarball.

	acdc-12.49

 C sources of the A-code to C translator acdc. This translator
 is used (and built) automatically by the bash advbld script, but it
 can also be used on its own. Once compiled and linked ("cc *.c -o
 acdc", which is done automatically by advbld), it will show
 usage if given -h (or --help) command line option. See
 acode-c-build.html for an explanation of
 uses of the translator if advbld is not available or cannot be used.

	bin

Contains the following A-code bash script tools:

	advbld

 An all-purpose bash script for building A-code game executables. See
 a separate page for a guide to this script's
 use. If, for whatever reason, you cannot or do not wish to use
 advbld, there is a separate
 page explaining how to create game executables from supplied C
 sources, and another page explaining
 how to convert A-code source to derived C source. Please note
 that in order to work, the script must be executed where it is in the
 supplied directories hierarchy, since it expects other parts of the
 hierarchy to be in the same relative positions, as supplied in the
 tarball. The top level directory acode-12.91 can, however, be
 renamed as you please.

	lib.sh

 A library of shell functions used by the advbld script.

	doc

 A-code documentation in HTML format.

	kernel-12.91

 A-code kernel C sources to compile and link with derived game C
 sources created by the acdc translator. The extras
 sub-directory contains bits and pieces required by specialist build modes
 (JavaScript/HTTP, library test and QT5).

Building A-code games from C sources

(A-code version 12.91)

Derived C sources

 A-code games are, naturally enough, written in A-code, which is an IF
 writing language originally created by David Platt when developing his
 Adv550 superset of the original Adventure. However, the first step of
 converting A-code source files into an executable involves translating them
 into ANSI C. This is done by the acdc A-code to C translator and the
 process is covered in the section on building
 from A-code sources. Here I assume that you already have the derived C
 sources either downloaded as a part of the overall A-code
 tarball or produced by running the acdc translator yourself. The
 translator ANSI C sources are also included in the same tarball.

Building an executable from the C sources

A-code games can be built in 5 distinct modes:
console, browser,
single turn, HTML/JavaScript
and library. This document explains the
differences between these modes, their respective uses and the ways of
building corresponding game versions from C sources.

If your system does not have the unistd.h header file, you should add
-DNO_UNISTD to all compilation commands given below. An
appendix lists and explains all compilation
symbols that may be used in compiling A-code game C sources.

The console mode

The console mode is how the original Adventure was initially played. It takes
input directly from the player and outputs any responses in plain text to a
"computer terminal" – these days most likely a terminal emulator window.
Some players still prefer this mode and it is also very handy for debugging.

While it still defaults to the dimensions of displays of ancient VDUs (24
lines and 80 fixed font characters per line), other dimensions can be
specified on the invocation command line by means of the -s option. The
kernel also provides the necessary hooks for a game to permit changes to
these defaults while playing.

The console mode also offers a unique opportunity to experience an A-code game
the way the original Adventure was played in 1970s/80s. The -o command line
option allows the output speed to be set to the baud rate of 110 (a teletype),
300 (earliest VDUs), 600, 1200, 2400, 4800 and 9600. Younger players are
hereby invited to marvel at the patience required to play at the lower speeds
(as we did!).

 For the full list of console mode command line options, please see
the section describing command line invocation
of A-code games.

If you have the readline and ncurses libraries installed
and available for linking (which probably needs a readline development
package), all you need to do is to use an ANSI C compiler
to compile and link the C files, specifying the console mode:

cc -DCONSOLE *.c -lreadline -lncurses -o <game-name>

If you do not have those libraries installed, you can still build a console
mode executable, which will lack the facility of recalling and editing
previous commands. To do so, just tell the compiler not to use
readline:

cc *.c -DCONSOLE -DNO_READLINE -o <game-name>

The browser mode

In the browser mode, A-code games do not interact with the player directly,
but instead invoke a local browser and use that to render game's output and to
obtain player's commands. In this mode, an A-code game acts as a very simple
HTTP server.

Unless otherwise specified, the player's default browser is invoked, but
another browser can be specified either on the invocation command line or by
modifying the acode.config file created by the A-code kernel.

The browser build of an A-code game automatically includes the console
build (but not the other way around!). Thus a browser-build game can be
invoked in the console mode by adding -C to the invocation command line.

Building a browser mode executable is virtually the same as building a
console mode one – you just drop the -DCONSOLE from the parameters given
to the compiler. When a browser is being used to render game's output, there
is no need for the readline library, so the basic browser mode build looks
like this:

cc *.c -DNO_READLINE -o <game-name>

If you want the executable to offer command editing when run in the
console mode, you will need to link in the two additional libraries:

cc *.c -lreadline -lncurses -o <game-name> *.c

The single turn mode

Originally developed for CGI operation, games built in this mode are only
suitable for running in a cloud, via a suitable front-end script, e.g. a
cgi-bin or a PHP one. In this mode, the game executable is supplied a single
command as a parameter on the invocation command line, sends the text
generated in response to standard output and exits. (See the
 the command line options section for details.)

The actual interaction with the player is carried out by the front
end script, which repeatedly invokes the executable for successive game
turns. The secret sauce is, of course, the player-invisible save and restore
of the current state of the game. This mechanism got later adapted for use by
other game modes, automatically giving all A-code games a persistent state.

In this mode all text output is HTML-formatted, though this can be
overridden if necessary. All such text is also prefixed by a single character,
which provides information to the wrapper script and is not expected to be
displayed to the player.

To build a single turn mode executable is very simple:

cc *.c -DTURN -o <game-name>

In this mode the executable is not responsible for acquiring player
commands and thus there is no need to signal the absence of the
readline library -- this is assumed automatically.

The HTML/JavaScript mode

Thanks to the magic of
emscripten, A-code
games can be built as pure (and purely local, with no network dependencies)
HTML/JavaScript page, usable by any HTML5 compliant browser. In this mode,
A-code games run entirely within the player's browser and use browser's own
sand-boxed file system for saving and restoring games.

For building games in this mode you will need emscripten installed
as well as its dependencies (clang and cmake).
Actually building a game involves two steps. Firstly the derived C
sources (plus the kernel ones) are converted to JavaScript via this
one-line command:

 emcc -Os -s ASM_JS=1 -s WASM=0 -s ENVIRONMENT=web -DJS
adv*.c -Wno-parentheses-equality -lidbfs.js -s
"EXTRA_EXPORTED_RUNTIME_METHODS=['cwrap']" --memory-init-file 0 -o acode.js -s
EXPORTED_FUNCTIONS="['_advturn']"

(That's the command line for Emscripten 1.39.6 -- experience suggests
that later versions may require a change in some of the arguments.)

Secondly, the resulting acode.js file has to be merged into the
acode.html template, which can be found in the tools directory to be
found in the relevant A-code tarballs. This merging is achieved by (a)
replacing all occurrences of the string %NAME% in the template by the name of
the game being built and (b) replacing the line consisting of the single token
%JAVASCRIPT% with the contents of the JavaScript file generated by
emcc.

The resulting HTML file can be called anything you like, but it seems a
good idea to replace 'acode' in its name with the actual name of the game.

The library mode

In some cases it is not feasible or appropriate for an A-code game to drive
its own command/response loop. App frameworks generally expect to do so
themselves. This situation is handled by compiling derived C sources in the
library mode:

cc -c *.c -DADVLIB

Compiled this way, instead of having a main() routine, the game has an
advturn() one, which expects player input to be supplied via its arguments
and returns a pointer to a text buffer containing the resulting text. As
in the single turn mode, the returned text is prefixed with a single character
denoting the nature of the text.

A separate section explains the details
of the advturn() interface. However, for testing/debugging purposes I had to
develop a simple C program, which uses the library mode and can be run in any
terminal emulator. Its source, libtest.c can be found in the tools
directory of an A-code tarball.

Appendix 1: Deprecated text data handling

By default, since version 12.01 of A-code, all text data is preloaded
by the acdc translator into the game C-source, whereas previous
versions by default stored text data in a separate .dat file. The
current arrangement is the simplest and most sensible one for most
machines these days, but a few years ago I still saw some not entirely
obsolete machines being defeated by the size of adv770 executable with
preloaded data. Hence other options are also on offer, even if you
don't have access to game A-code sources.

	Creating the text data file

Even though game C sources no longer come with the .dat text data file,
this file can get automatically constructed by the game executable. To
do this, first build the executable in one of the three ways described
below (for preloading, paging or reading of the data file), and then run
the resulting executable in the directory containing the C sources.
Failing to find the .dat file, but finding adv6.h instead, the game will
construct the .dat file from the .h one. From then on the game will run
normally, getting its text data from the .dat file, which should be kept
in the same place as the executable (but see the section
on game invocation command options for
an alternative).

	Loading text data on game startup

If -DMEMORY is added to any of the C compilation commands suggested
above, the text data file will be preloaded into a dynamically allocated
buffer on game startup. This used to be the default arrangement in
A-code versions 10 and 11.

	Reading data from the text file

If your memory is constrained, but disk I/O is reasonably quick (which it
would be unless you are running the game from a floppy disk), you can
use the -DFILE compilation flag. This causes the game to read from the
data file with no paging of its own, though one hopes that *some* paging
will be done by the OS. As a guess, such machines will have no GUI
browsers, so -DCONSOLE should also be added to compilation flags.

	Keeping recent text data in memory

If -DSWAP is added to any of the C compilation commands suggested above,
all access to the text data file will be through an internal paging
system of 32 1KB buffers, paging data in and out on the
first-in-first-out basis. The number of swap buffers can be modified
by defining the SWAP symbol to have a particular value, e.g. -DSWAP=40.
The number of buffers will be coerced into the range from 16 to 128
inclusive.

This method is only useful for the oldest and slowest machines.
Again, it probably makes sense to add -DCONSOLE as well, since a machine
with such a limited amount of memory is unlikely to sport a GUI-based browser.

Appendix 2: Kernel compilation symbols

Compilation symbols listed below can be added to the compilation command line
as -D<symbol> when building A-code games. There is a number of other
symbols being defined and used by kernel source files, which you should leave
well alone.

The main mode symbols have been already referenced above.

CONSOLE Specifies console-only mode

CGI Specifies single turn mode

HTTP Specifies combined browser/console mode – this
is the default

JS Specifies JavaScript/HTML mode

ADVLIB Specifies library mode

Four additional symbols can be used to control what system routines
the game executable needs from the system.

NO_UNISTD Signals absence of the unistd.h header
file. Use it in all modes if you do not have the unistd library.

NO_READLINE Suppresses use of the readline library (only
relevant in the console and browser/console modes – ignored
otherwise).

NO_SLOW Suppresses the ability to slow down game's output
(only relevant in the console and browser/console modes – ignored
otherwise).

PAUSE Prevents immediate exit on game completion (useful
when running in console mode in a window which automatically closes on game's
exit).

Three further symbols which are only required in kernel development
work and/or in special builds.

IOS Signals iOS build.

DEBUG Enables various debug messages from the kernel.

DIRECT Prevents the HTTP server being daemonised in the
browser mode – makes debugging easier!

Finally, there are the deprecated symbols specifying ways of dealing
with a separate text data file, if there is one. Note that these symbols override
whatever text data arrangement was specified in running acdc to convert
A-code sources into C.

MEMORY Text data file to be loaded into memory on
startup.

FILE Text to be retrieved as required directly from
the data file.

SWAP[=<page_buffers>] Text is to be paged
in executables 1KB page buffers. The default is 32 such buffers, but
another number can be specified between 16 and 128 inclusive.

Creating ANSI C sources from the A-code source

(A-code acdc version 12.91)

A-code source

Logically, an A-code source is a single file, usually with the .acd
suffix. The suffix is optional; if present, it can be omitted when
nominating to acdc the A-code file to be processed.

In practice, A-code source can be split into a number of files, which
are incorporated in the "main" one by means of the A-code
include major directive. Again, such include files are
conventionally suffixed with .acd, which suffix may be omitted in
include statements.

A-code framework

To build a working executable out of A-code source, you need A-code kernel
files, available as a part of the acode system source tarball

https://mipmip.org/acode/acode-12.91.html. This tarball contains C
sources of the latest releases of the acdc translator and of the A-code
kernel, as well as some useful bash scripts. See that page for details.

 If you are using Linux, Unix, OSX/MacOS or Microsoft's LSW, the simplest
 thing to do is to use the advbld bash script
 supplied as a part of the acode source tarball – please see the README
 file contained therein. However, if you are using some other platform, you
 will probably need to build and use acdc yourself. The rest of this
 document explains how to do that.

Building the acdc translator

 To build the acdc executable you need only an ANSI C compiler. Simply
 compile and link the relevant C sources – no libraries or special
 compilation or linking options required:

 cc *.c -o acdc

Using the acdc translator

 By default, any resulting C sources (adv.c and adv.h) are generated
 alongside the A-code source file being translated, unless the sub-directory
 C (that's capital C!) us found there, in which case that's where the sources
 go.

 The acdc translator needs no command line arguments. If some are
 supplied, they can be given in any order. If the game source-file is
 omitted, it is prompted for. All other command line listed below are
 optional – default behaviour covers all usual cases.

	<sourcefile>

 	The name or pathname of the main A-code source file;
 if omitted, it is prompted for. Any include
 statements are taken to be relative to the directory in which the main
 source file is located.

	-plain abbreviable to -p

 	Causes the game text data not to be encrypted.

	-xref abbreviable to -x

 	Requests that a cross-reference file of the A-code source be
 created. For technical reasons (meaning I am being lazy), this file is
 called game.xrf. It is not sorted and can be processed further
 with the sortref Perl utility, supplied as a part of
 the acode package.

	-no-warnings abbreviable to -nw

 	Suppresses warnings about unused symbols in the A-code source.

	-quiet abbreviable to -q

 	Suppresses most of the standard info messages generated by
 acdc in translating the A-code source.

	-debug abbreviable to -d

 	Causes A-code source to be added as comment lines to the translated
 C source files. Also adds trace message showing individual
 A-code code chunks being entered during play. Also causes the
 DEBUG symbol to be defined in the kernel source.

	-help abbreviable to -h

 	Lists available command line arguments.

By default, the game's text data is preloaded into the executable. These
days only very old and/or small machines are unhappy with the size of the
resulting executable. However, if the default behaviour is for any reason
not the suitable one, there are three further deprecated command line options
that can be used.

	-file-memory abbreviable to -fm

 	Requests a separate .dat text data file to be created
 and to be read in full into the game's memory on startup.
 Useful only if the OS objects to large executables.

	-file-read abbreviable to -fr

 	Requests a separate .dat text data file to be created
 and to be accessed by the game by direct file reads as required.
 Only useful for really small, slow machines.

	-file-page [<npage>] abbreviable to -fp

 	Requests a separate .dat text data file to be created
 and to be accessed by the game
 using its own internal paging mechanism. The optional
 <npage> argument defaults to 32 and specifies the number
 of 1KB paging buffers. Only useful for really small,
 slow machines.

Adding kernel source files

The A-code kernel consists of source files adv00.c,
adv01.h and adv0.h. All three can be found in the
A-code source tarball. Copy them alongside the C sources created by
acdc, and you will have the complete C source required
to build an executable.

Building an executable

 Building a simple adventure executable from the derived C sources is not
 complicated: just compile and link the lot together with any ANSI C
 compiler, adding -DNO_READLINE to the command line. The resulting executable
 will default to using a local browser for its display (except for DOS
 builds). But it will lack command history and editing in the console mode.

 If you cannot use a browser or prefer not to, you can also run such default
 build from a console window by adding -C (or /C on DOS and Windows) to the
 invocation command line.

 If that's good enough for you, fine, but if you hit problems, or want a more
 sophisticated version, read the guide to
 building A-code games from intermediate C sources.

Using the advbld script

	

	Requirements

	Assumptions

	Basic usage

	Advanced usage

	Brief options summary

	Options explained

My main tool for building A-code games is advbld – a
bash script for building various modes of A-code games from their
A-code sources (or from derived C ones). It can be found in the bin
sub-directory of the directory tree supplied in the stand-alone A-code source
tarball A-code source
tarball and also bundled with A-code sources of individual games.

Requirements

The script should be usable on any Unix-like system which supports the GNU
bash shell (version 3 or later) – i.e. Linux, various versions of
Unix, MacOS and these days, perhaps even Windows under LSW.

For its simplest functionality, the script requires nothing more than the
presence of an ANSI C compiler (e.g. gcc or clang) invokable as
cc. The JavaScript/HTML build also requires Emscripten, while a Qt5
build needs Qt5WebKit and Qt5WebKitWidgets libraries, usually not installed by
default with Qt5.

If GNU readline and ncurses libraries are present, these will
be automatically used if necessary. Without them, the console build of games
will lack command editing functionality.

Assumptions

The script makes some important assumptions.

	The script needs to use the acdc translator and kernel files.
Directories containing these are assumed to be found alongside the script's
directory, as supplied in the tarball. It follows that the script
should be invoked where it is, in its bin/ directory. You can invoke it
by its pathname, of you can add that bin/ directory to the command
search path.

	The acdc translator demands that all A-code source files have
the .acd suffix. If a file name is specified (be it on the command
line or by the INCLUDE directive in the code) without this suffix, it will be
automatically appended before any attempt to open the file.

	
Unless the script is given the pathname of the game's source, it needs to be
able to make a reasonable guess as to what source file should be used. To
do so, it assumes that game source file(s) live in a directory of the same
name as the name of the game, possibly tagged with the game version number.
So for example, the main source file of adv770 is assumed to be
adv770.acd to be found in the directory called adv770 or
e.g. adv770-2.19.

	By convention, sources found in a directory without a version
number tag are deemed to be "unstable" – i.e. under
development, whereas directories tagged by a version number are assumed to
hold stable game versions. This distinction is only of use to game
developers.

Basic use of advbld

The most straightforward, though not always the most convenient, way
to use the script is to supply it with the pathname of a game's source
file.

 $ advbld ~/games/adv770/adv770.acd

or alternatively

 $ cd ~/games/adv770
 $ advbld adv770.acd

The .acd suffix can be dropped – if absent, it will be
automatically appended by acdc.

Perhaps more conveniently, the script can infer the name of the main source
file from the name of the current directory. So for example

 $ cd ~/games/adv770-2.19
 $ advbld

works too. The script will take the name of the current directory,
stripping off the version number if necessary, and then look for a file named
adv770.acd or main.acd or game.acd.

If a game is specified just by name and there is no game file of the
corresponding name in the current directory, it will be searched for –
the directory specified by the environment variable $ADVDIR, if this is
set, and then in the likely places relative to the location of the
advbld script itself. The upshot is that in most cases you can just
type e.g. "advbld adv770" and let the script do the finding. For
more details, see the next section on advanced uses of the script.

In all cases, the executable will be built in the same directory in which
the game source is located.

By default, the script builds the combined browser/console executable.
By default the executable will invoke your default browser and use that
as the game interface. Alternatively, if invoked with the -C command
line option, it will run simply as a console mode program. See the next
section for other build modes.

Advanced use of advbld

As supplied, the A-code sources tarball has the following directory
hierarchy:

	
 acode-12.91
 │
 ┌────────────────────┼───────────────────┐
 │ │ │
 acdc-12.49 bin kernel-12.91

The advbld script can be found in the bin sub-directory of the
directory tree supplied in the A-code tools tarball.
You can change the name of the top directory of that tree, but the rest of it must
stay as supplied in order for advbld to work. The tarball does
not contain an executable of the acdc translator. It will be
build by the script automatically the first time it is required using
an ANSI C compiler invokable as cc.

The acdc and kernel sub-directories can be versioned
(e.g. acdc-12.49) or non-versioned (e.g. just acdc).
By convention, directories without version numbers contain
"unstable" code – still under development. Versioned
directories contain stable code of the appropriate version.

By default, the advbld script will use either non-versioned
directories for acdc, kernel and whatever game is being built, or failing
that, the directory of the right name with the highest version number
available. This default behaviour can be modified by invocation options used.
For example, one can supply a game name with its version number, to force the
particular version of the game code to be built. Or one can use the -s
option, to ignore non-stable code.

When searching for a game specified just by its name, which is not found in
either in the current directory or in an appropriately named sub-directory of
$ADVDIR (if this is set), the script will look first alongside its bin
directory or alongside its parent (acode-12.91 in the above diagram).

If you wish to build a game in the HTML/JavaScript
mode, you will also need to install and configure Emscripten (https://kripken.github.io/emscripten-site/).

A QT5 build requires Qt5 installed and dev versions of these libraries:
Qt5Core, Qt5Widgets, Qt5 Gui, Qt5WebKit and Qt5WebKitWidgets.

If you have Perl installed, the script can generate sorted cross-reference
lists of game A-code sources.

Usage: advbld [options] [game]

To build a game, advbld needs: game source(s), the acdc translator
and the A-code kernel files. All of these are expected to be found in sub-directories
of the parent directory of the one containing the advbld script.

The directory containing game source(s) is assumed to bear the name of the game
itself, possibly suffixed with a version number (e.g. adv770 or
adv770-2.19).

The acdc translator is expected to be found in the directory called
'acdc'. If this is absent, directories named 'acdc-<version>' (e.g.
'acdc-12.36') are examined and the one with the highest version number is
used. (The non-versioned directory is assumed to contain unstable sources and is
ignored if a stable build is requested.)

Similarly, the kernel files are assumed to be either in the directory called
'kernel', or (if this is absent or if a stable build is requested) in the
highest version number directory named 'kernel-<version>'.

By default, advbld assumes the name of your current directory to be the
name of the game to be built. If a game name is given, it will be assumed to
live in a directory of that name alongside the directory containing the script itself.
This is why game sources available from my mipmip.org are supplied in a directory tree of the
same name as the A-code tools one. The A-code tools and any game sources
tarballs are guaranteed to co-exist peacefully within that top level directory
with no clashes.

For explanation of build modes available, please see
a separate page.

Here's a quick summary of advbld options (see
below for more detailed explanations).

	Main build options

	 -B	default; build a combined console/browser (HTTP) executable

	 -C	build a console-only executable (no HTTP)

	 -J	build an HTML/JavaScript version

	 -L	build a test executable using the library mode

	 -Q	build a QT5 executable

	 -T	build a single turn (cloud) mode executable

	 -W	include opt/debug.acd if it exists.
 This option is compatible with all of the above build types.

	Script display options

	 -v	show more progress info

	 -q	less progress info

	 -x	echo commands being executed

	 -h	show available options

 The rest of options are of use only to an A-code game developer.

Versions of acdc, kernel and game are deemed "unstable" if the relevant
directories lack a version number. The script defaults to using unstable
versions, if present, and the latest (highest version number) versions
otherwise.

	Version-related options

	 -s	use the latest stable versions of acdc and kernel (and game)

	 -u	insist on using unstable versions of acdc and kernel (and game)

	 -a <version>	use the specified version of acdc

	 -k <version>	use the specified version of kernel

	Options passed through to the C compiler

	 -g	create a gdb-instrumented executable

	 -gg	like -g plus gcc macro storing

	 -D<symbol>	add a symbol to the C compilation command

	 --m32	force building 32 bit executable, if possible

	Options modifying acdc behaviour

	 -p	(plain) don't encrypt game data

	 -d	acdc's -debug – adds A-code lines as comments in derived C

	 -c	translate A-code to C but do not build executable

	 -b	don't translate A-code to C but do build executable

	 -w	show acdc warnings, which are suppressed by default

	 -X	generate A-code source cross-reference lists

Now for some more details... Please note that the script
may also understand some deprecated options not listed here. Those will
simply disappear in due time.

Main build options

	 -B (default)

	Browser/Console build

This option instructs advbld to build a
browser-capable executable. By default such an executable uses a local browser
for interacting with the players. The executable itself acts as a very simple
HTTP server, passing player commands to the game, and game's responses to the
player. The default browser is invoked for this purpose (in a manner
appropriate to supported platforms), but a different browser can be nominated
on the command line following this option, or by editing the .acode/acode.conf
file. This build can be also used to play in a console (terminal) window
by invoking the executable with the -C option.

	 -C

	Console mode build
The game executable expects to run in a
console (or terminal) window. It offers the unique opportunity of adventuring
the way it was on old slow output devices. The output speed in baud can
be specified by adding "-o <baud>" to the invocation command line,
where "<baud> is a number such as 300 (old teletypes), 1200
(DECwriters) etc...

	 -L

	Library mode build
 By default, A-code games are in control of
the command/response loop, but this is not possible in some cases (e.g on
IOs). This "library" option converts kernel's main() into
advturn(), which returns every time the player is prompted for input.
It is up to the calling program to obtain player command and to supply it in
the next call to advturn(). Please see
the section on details of the call interface.

	 -J

	JavaScript/HTML build

Building a JavaScript version requires presence of emscripten (see
the emscripten home
page for installation instructions). This option causes advbld
to create a self-contained HTML/JavaScript page, which will run the game
in any HTML5-compliant browser.

	 -Q

	QT5 build

This build puts a QT5 wrapper around the library mode build. It requires
dev versions of the following QT libraries: Qt5Core, Qt5Widgets, Qt5Gui,
Qt5WebKit and Qt5WebKitWidgets.

	 -T

	Single turn (cloud) build

The resulting executable is suitable for cloud use with a suitable front-end.
It restores game in progress, takes player command as command line arguments,
executes a single game turn, outputs the result on standard output as
HTML-formatted text, saves game in progress and exits. A new game can be
forced by using the -n command line keyword instead of player command. A save
game can be loaded by starting the executable with -l <saved_game>.

	 -W

	Debug (wizard mode) build

If the file opt/debug.acd exists, it gets copied to the current directory
before building the game. The copy is deleted after the build is complete.
This mechanism presupposes debug.acd being conditionally included
by the game's A-code source.

Script display options

	 -v

	Requests more progress info

Adds acdc's report to the information being displayed.

	 -q

	Requests less progress info

Only the final success (or error report) is produced.

	 -x

	Echo commands being executed by the advbld script

	 -h

	Show available options of the advbld script

Version-related options

	 -s

	Force use of the latest stable acdc and kernel (and game) versions

 Stable kernel versions live in directories named
kernel-<version>. Similarly for the acdc translator and
individual games. This option overrides the default behaviour of preferring
unstable versions of acdc, kernel and game code. Forces the use of the highest
version number ones. Only of use to game developers.

	 -u

	Forces use of the unstable acdc and kernel (and game)
versions

Only of use to game developers.

	 -a <version>

	You may have older versions of acdc in directories called
acdc-<version>. This option instructs advbld to use the
specified acdc version, instead of searching for the most recent one.

	 -k <version>

	You may have older versions of the kernel in directories called
kernel-<version>. This option instructs advbld to use the
specified kernel version, instead of searching for the most recent one.

Options passed through to the C compiler

	 -g

	Create a gdb-instrumented executable

	 -gg

	As -g but forces use of gcc and makes macro definitions
available to the gdb debugger. Note that this is not
a GNU-style long option. It is in fact interpreted as -g -g.

	 -D<symbol>

	Define an additional compilation symbol

NB: you can (but need not) add a space between -D and the symbol name.

	 --m32

	Force 32 build

Only of use on 64 bit machines.

Options modifying acdc behaviour

	 -p

	(Plain) don't encrypt game data

By default game data (mostly text) is encrypted in order to make it harder
to cheat by examining core dumps. The disadvantage of this is that executables
are less compressible.

	 -d

	acdc's -debug – adds A-code lines as comments in derived C

In the absence of an A-code debugger, this is a moderately convenient way
of debugging games on the A-code source level.

	 -c

	Translate A-code to C but do not build executable

Just invokes acdc to translate game's A-code to C.

	 -b

	Don't translate A-code to C but do build executable

This option omits running acdc – useful if temporarily
tweaking translated C sources while debugging.

	 -w

	Show acdc warnings

Warnings about unused symbols in the A-code source are suppressed
by default.

	 -X

	Generate A-code cross-reference

Requests the acdc translator to construct sorted cross-reference
lists of the A-code source

A-code build types

 A-code games can be built in a number of different ways, such as e.g.
 console only. This document explains all these build types and their uses.
 For details on actually building games in various modes, please see a separate page explaining how to build A-code
 games from derived ANSI C sources.

 	The console build	

 	The browser build	

 	The library build	

 	The JavaScript build	

 	The QT5 build	

 	The single turn build	

The console build

 The console build replicates how the original Adventure was initially
 played. It takes input directly from the player and outputs any responses in
 plain text to a "computer terminal" – these days most likely a
 terminal emulator window. Some players still prefer this build type and it is
 also very handy for debugging.

 While it still defaults to the dimensions of displays of ancient VDUs (24
 lines and 80 fixed font characters per line), other dimensions can be
 specified on the invocation command line by means of the -s option. The
 kernel also provides the necessary hooks for a game to permit changes to
 these defaults while playing.

 The console build also offers a unique opportunity to experience an A-code
 game the way the original Adventure was played in 1970s/80s. The -o command
 line option allows the output speed to be set to the baud rate of 110 (a
 teletype), 300 (earliest VDUs), 600, 1200, 2400, 4800 and 9600. Younger
 players are hereby invited to marvel at the patience required to play at the
 lower speeds (as we did!).

 For the full list of console build command line options, please see the
 section describing command line invocation
 of A-code games.

The browser/console build

 By default, A-code games built in this way do not interact with the player
 directly, but instead invoke a local browser and use that to render game's
 output and to obtain player's commands. In this mode, an A-code game acts as
 a very simple HTTP server. No access to network is involved – there's
 just local socket-based communication between the game and the browser.

 Unless otherwise specified, the player's default browser is invoked, but
 another browser can be specified either on the invocation command line or by
 modifying the acode.config file created by the A-code kernel.

 The browser build of an A-code game automatically includes the console build
 (but not the other way around!). Thus a browser-build game can be invoked in
 the console mode by adding -C to the invocation command line. All console
 build command line options apply when -C is specified.

The library build

 In some cases it is not feasible or appropriate for an A-code game to drive
 its own command/response loop. App frameworks generally expect to do so
 themselves. This situation is handled by compiling derived C sources in the
 library mode – used, for example, in Brian Ball's iOS port of Adv770
 and in HTML/JavaScript builds of A-code games.

 A simple such wrapper (libtest.c) is provided with kernel sources and
 should be compiled and linked with derived C-sources and with kernel sources
 to produce a library build executable.

The HTML/JavaScript build

 Thanks to the magic of emscripten, A-code
 games can be built as pure (and purely local, with no network dependencies)
 HTML/JavaScript page, usable by any HTML5 compliant browser. If built this
 way, A-code games run entirely within the player's browser with no access to
 the network, and use browser's own sand-boxed file system for saving and
 restoring games.

The QT5 build

The QT5 build uses the library mode of A-code and wraps it in a QT5
GUI front-end.

The single turn build

 Originally developed for CGI operation, single turn game builds are only
 suitable for running in a cloud, via a suitable front-end script, e.g. a
 cgi-bin or a PHP one. In this mode, the game executable is supplied a single
 command as a parameter on the invocation command line, sends the text
 generated in response to standard output and exits. (See the the command line options section for
 details.)

 The actual interaction with the player is carried out by the front-end
 script, which repeatedly invokes the executable for successive game turns.
 The secret sauce is, of course, the player-invisible save and restore of the
 current state of the game. This mechanism got later adapted for use by other
 game modes, automatically giving all A-code games a persistent state.

 In this build all text output is HTML-formatted by default, though this can
 be overridden if necessary, by adding -C to the invocation command line. All
 output text is also prefixed by a single character, which provides
 information to the wrapper script and is not expected to be displayed to the
 player.

A-code game invocation options

(A-code version 12.91)

This document describes command line options available when running
an A-code game. Game behaviour is generally regulated by the internally
documented acode.conf file, which can be found in the .acode
directory (just acode on MS platforms), automatically created in
player's home directory. Where command line options refer to particular
features covered by the configuration file, they override the
configuration file settings.

Conventions:

 	Angle brackets <string> denote a symbolic string to be
 replaced by something appropriate. E.g. <filename> would be
 replaced by the name of a file (with no surrounding angel brackets).

 	Square brackets [] denote something optional. So e.g.
 -l[<logfilename>] means that the name of the log file may
 be omitted.

 	Braces { } denote a list of permissible values, separated
 by vertical bars |. E.g. -b[{0|1|2}] means the -b may be
 optionally (square brackets!) followed by one of the three digits
 zero,one or two.

 	All options are shown with a short (single dash) prefix, but
 double dashes are also accepted.

 	Where a value can be specified with a command line option,
 the syntax shown is that of the value abutting directly to
 the option specification letter. However, an equality sign =
 can be placed between the two, so that -b0 is equivalent to
 -b=0.

The following command line options are valid for both the browser
and the console display modes:

	-n

 	Force a new game. By default, if a previous game session got
 somehow forcibly interrupted (e.g. by the game process being
 killed for whatever reason), the interrupted session is
 automatically resumed when the game is restarted. The -n
 option overrides this behaviour and forces the interrupted
 session to be forgotten.

	[-r]<dumpfile>

 	Restore game from dump. Ignored if the game
 does not support game dump files being specified
 on the command line.
 The -r optional in that any command line
 argument which does not begin with a dash
 will be interpreted as the name
 of the dumpfile to restore on invocation.

	-l[<logfile>]

 	
 Log the game. Specifies the file into which a session log is to be
 written. The log is human-readable, but has some additional information
 useful for debugging. If the nominated logfile is in fact a directory,
 the default log name is used (game name, sifficed with .log).
 If no logfile name or pathname is specified, the log is created alongside
 game's saved files and the default log name is used.
already exists, it gets appended to.

	-B<browser>

 	
 Browser mode executables only.
 Use a non-default browser for player interaction.
 Browsers can be specified by their
 pathname, or by their name – in the latter case the name
 is searched for in directories given by the PATH variable.

	-C

 	For browser-mode executables, force console display –
 i.e. do not use the browser interface. For single turn mode executables
 this option enforces plain text, non-formatted output, instead of
 default HTML output.

	--

 	For single turn executable, treat the rest of the command line
 as the player's game command.

	-b[{0|1|2}]

 	Set or invert the blank line setting. If set to zero
 blank lines are inserted before and after each prompt.
 If the value is 1, blank lines around '?' prompts are suppressed,
 resulting in a more compact display. If the value is 2,
 then ALL blank lines are suppressed, for super-compact, but
 less readable output. If no value is specified, the
 new setting is 0 or 1, inverting the A-code default for this
 game. In old-style A-code (Adv550), which does
 not distinguish between replies to queries and general
 commands, this only affects presence/absence of
 a blank line after the prompt line, and never before it.

	-u{0|1|none}

 	Set the initial state of undo-history collection.
 Ignored if the game does not support undo.
 If the value is zero, the default undo status is OFF.
 If the value is one, the default undo status is ON.
 The "none" state implies OFF and disallows undo functionality
 being subsequently switched on from
 within the game. The default state is ON for games
 which define the verb UNDO, and "none" otherwise.

	-v

 	Show the game, kernel and acdc version numbers and exit.

	-h

 	Print command line usage summary appropriate to the mode of
 the executable's build.

 In addition, some options are only meaningful in the console
 display mode, and are simply ignored in other modes.

	-j[{0|1}]

 	Set text mode to wrap (0) or justify (1). If no value is
 specified, invert the default A-code setting for this game.
 In wrap mode, text is simply broken into lines according
 to the screen width (see the -s option below). With
 justification turned on, each line is right-justified.
 All of this presupposes a fixed font being in use. For
 variable font devices, which tend to do their own
 wrapping, the default screen width should be set to zero,
 meaning "infinite", and the margin should be specified as
 zero too. This option is ignored by games written in the
 "old style" A-code (i.e. by adv550).

	-s<W>.<H>[.<M>]

 	Set screen size (width in fixed font characters, height
 in lines, and margin in fixed font blanks).
 The default screen dimension is 80x24-1, the margin
 being set to 1 character. The -s option allows a
 different screen size (and optionally margin) to be
 specified. Screen width of zero means "infinite" width.
 Note that the line length cannot be set to less than
 16 characters and the minimal number of lines per
 screen is 5.

	-o<baudrate>

 	Set the output speed as specified by the
 argument. Meaningful only in the "dumb" console mode and
 only if C sources compiled without the NO_SLOW symbol.
 Baud rate is specified in bits per second, and taking
 into the account control and parity bits, the output
 speed in characters per second is simply the baud rate
 divided by 10. The game coerces the specified baud
 rate to the nearest lower standard value (one of
 110, 300, 600, 1200, 2400, 4800 and 9600), except
 that anything below 110 (the speed of a teletype) is
 also treated as 110. The default value is 300 - the
 speed of a DECwriter. Note, however, that under DOS
 and Windows any baud rate above 600 results in no
 slowdown at all.

	-p[{0|1}]

 	Pause on exit.
 Requests that after printing the final exit message
 the game should prompt the player for a <CR>, before exiting.
 This feature is intended for players who wish to
 play console version of the game, in a window which
 closes as soon as the game exits.

The functionality of the -s, -u and
-j options is also provided via kernel hooks (see
procedure special() in the kernel source file adv00.c), so that the game
may -- at author's discretion -- offer the player commands for toggling
the justification switch, switching on and off the change history, and
altering screen size and margin.

Finally, if the game was build to have a separate data file
(only useful for DOS builds, nowadays),
a non-default location of that file may be specified via the -d
option.

	-d<dbsdir>

 	If using a data file, specify its directory.
 Ignored if the game is built as a simple executable
 with no associated data file.
 By default, the game data file is assumed to live in
 the same directory as the executable. The -d option
 allows a separate location to be specified. The
 program will attempt to work out the separator
 which should follow the directory name, but if in doubt
 as to the appropriate one for the given platform,
 the dbs name will be simply concatenated with the
 supplied pathname -- hence if it doesn't work, try
 adding the trailing separator to the pathname.

Any unknown or suppressed keywords are quietly ignored.

A-code library mode interface

Normally, A-code games drive their own main loop, but various app
frameworks insist on taking this functionality over. To cater for
implementations based on such frameworks, A-code kernel has a library
mode. When compiled in this mode, instead of having main(), it has a
function called advturn(), which takes as its sole character string argument a
a request (e.g. a player's command), and returns as its value a pointer to the
game's response.

char *advturn(char *command)

Examples of such builds are the emscripten-based HTML/JavaScript build
of Adv770 and Brian Ball's iOS build of the same game. The
advbld script can be used to build test
library mode versions of game executables. It uses the libtest.c
wrapper provided with the kernel sources.

At present, there is one important restriction on A-code games to be built
using the library mode: they cannot use the QUERY directive. Reasons for this
restriction, as well as a workaround, can be found in the section describing the A-code CONTEXT
mechanism.

The advturn function takes a character string as its single argument and
returns a pointer to a character string. This pointer is maintained by the
kernel and should not be manipulated by the calling code.

Once the game is running, the argument string contains a game command
obtained from the player and the returned pointer points to the game's
response to that command. However, there are also other special values that
the argument string can have:

	"_INFO_"

	Requests game's info. The returned string contains game's name, version and
date.

	
"_LIST_"

	Requests the list of saved games separated with '|' (vertical bar) used as
a separator. If there is a game-in-progress save, it heads the list under the
name of the game prefixed with a dot (e.g. .adv770).

	
"_START_[{TEXT_|HTML_}]"

	Requests a new game to be started. The optional "TEXT_" or
"HTML _" force use of plain text or HTML output, as appropriate.
The default is HTML.

	
"_RESUME_[{TEXT_|HTML_}]"

	Requests the game-in-progress (if any) to be resumed. Text or HTML output
can be nominated in the same manner as for _START_.

	
"_LOAD_[{TEXT_|HTML_}]<save_name>"

	Requests the nominated saved game to be restarted. Here too,
"TEXT_" or "HTML_" can be used to force the desired
output format, e.g. "_LOAD_HTML_mygame".

Except for the above special cases, the argument string is interpreted as
the player's next command to be processed by the game. The output string
contains the full game's response, prefixed with a single character indicating
the type of the response:

	'f' means this is the final response – the game is over

	'q' means the response is a query of some sort (not necessarily a yes/no
one)

	't' signals just ordinary text, which should be followed by a prompt
before requesting player's next command

	'n' signals null response (this happens if the command string is null).
The rest of the response is unchanged from the previous non-null command.

The default game output format is HTML, except for console mode builds
where plain text is enforced. Paragraphs of plain text output are not
split into separate lines – any wrapping, if required, has to be done by
the calling code.

The simple libtest.c wrapper program supplied with the A-code kernel
sources provides an example of using the library mode.

The CONTEXT mechanism
or how to avoid use of QUERY

 The way A-code is currently implemented, has one substantial disadvantage.
 The two input directives (INPUT and QUERY) expect execution to proceed from
 the the point where they have been called, which is fine if the game
 executable takes care of its own main loop. However, in the single turn
 (CGI) and library modes, this is not the case. Input is obtained by other
 controlling software (e.g. by a PHP script, in the single turn mode) and
 there is no mechanism to return the game to the point at which an input
 directive is used. The problem is aggravated by the fact that it may make
 perfect sense to have multiple calls for input in a single pass through the
 main loop (e.g. get general command, if this command is SAVE without a name
 to save the game under, get the name; if there is already such a saved game,
 query whether it should be overwritten).

 In Platt's original A-code implementation as a virtual machine this would
 not have been a problem. One simply saved the state of the VM before
 returning control to the external software. Once the game code is re-invoked
 and supplied with the next command, the VM state is restored and execution
 proceeds as normal. Things are nowhere near as simple when a game is simply
 an executable (or a library) built from C sources.

 There are possible solutions, of course. The game could be split into two
 processes: one in charge of player communication and the other running the
 game's world. Indeed, that's how the browser mode build works, but this
 arrangement is not suitable for running in a third-party cloud.

 The CONTEXT mechanism was my solution to this problem when implementing the
 original CGI-based implementation of Adv770 to be used by game's
 beta-testers. The idea is a simple one. The game can acquire query responses
 as a part of the main loop – it just needs to know that a question has
 been asked and specifically what question has been asked. Then having
 acquired player's input it can deal with it appropriately.

 At first glance, no kernel involvement is required for this to work, but
 there are reasons why it does have to be aware of this mechanism. Otherwise
 anomalies would arise in e.g. orphan command word handling and the game
 persistence mechanism. Thus variable named CONTEXT is deemed to be special
 by the kernel. If it is set to zero, the next expected input is just a
 general game command. If set to non-zero, however, an answer to a particular
 query is expected by the game.

Here is a very simple example. First a trivial A-code program using
QUERY:

style 12
verb quit
init
repeat
(Some house-keeping code)
repeat
 input # No initialisation
 query "Really?_" # The underscore is a forced space
 ifkey quit
 say "Bye..."
 stop
 else
 say "OK."
 fin
 else
 say "If not, not."
 fin
 say "_" # Add a blank line

 And here is one possible equivalent using the CONTEXT variable instead of
 the QUERY directive:

style 12
var context
verb quit
verb yes # Any other query answer is deemed to be no
init # CONTEXT automatically initialised to zero
repeat
 ifturn
 and
 ifflag context, prompted
 proceed
 fin
(Some house-keeping code here)
repeat
 ifeq context, 0 # A general command is required
 proceed
 fin
 save command # Preserve player's original command
 input # Get query response
 ifkey yes
 restore command # Restore the original command
 ifkey quit # And act on it if appropriate
 say "Bye..."
 stop
 fin
 say "OK."
 else
 say "If not, not."
 fin
 set context, 0 # Ensure next loop is just a general command one
 quip "_" # Add a blank line
repeat
 input
 set context, 1 # Signal query processing is needed
 quip "f:Really?_"

 Note the addition to the first, house-keeping REPEAT section. In single turn
 builds it ensures that the housekeeping code is not executed twice, whenever
 the player is prompted for input.

 Probably the best way of getting to grips with the context mechanism is to
 examine differences between A-code sources of Dave
 Platt's non-CGI and my CGI versions of Platt's Adv550.

A brief summary of A-code, version 12

A-code is the adventure-writing language developed by Dave Platt for the
adv550 superset of the original Adventure, and subsequently developed by
Mike Arnautov, in working on the adv660 superset and later on the adv770
one.

Introduction

A-code is not intended to be a general purpose programming language and its
strengths lie in being tailored specifically for programming purely
text-based interactive fiction games. Each game created with the A-code
system is a stand-alone package, requiring no separate game
engine/interpreter. As an added bonus, with a little care it is possible to
ensure that any game saves are
upward compatible and thus can be used even
after the game has been modified/extended (a feature of particular use in
beta-testing!).

The current implementation of the language has only been used for writing
extensions of the original Adventure, and hence its parser is limited to
dealing with commands which can be reduced to (a series of) verb/noun
commands. (See the section on the
current A-code parser.)

On the positive side, that implementation is sufficiently UTF8 compliant
to allows games to be written in some languages and character sets other than
English/Latin.

Technically, A-code is a Polish notation (i.e. "prefix", or "operator
[argument [...]]") language, so its statements take the form of, e.g.
"set door, oiled".

 The original version by Dave Platt was organised
as a "munger", translating A-code source into tokenised pseudo-binary, and an
interpreter, interpreting the pseudo-binary at run time. This was an
economical arrangement, but as versions grew in size, its performance on a
multi-user machine gradually became less satisfactory. (We are talking mid-80s
here! :-))

This is why the current implementation of A-code takes a different route. It
consists of an A-code to C translator (".acd -> .c" or just acdc!) and a C
kernel which gets compiled and loaded with the translated code. The overall
size of the program is larger, but the performance is very much better.

Now that computer speeds have increased dramatically, it would probably
make sense to replace this translation-based implementation with a virtual
machine, akin to Platt's original implementation.

A-code style and version numbering

The current version of A-code departs in some significant ways from Platt's
original version of the language, but maintains full backward compatibility
with it. This is achieved by an optional explicit declaration via the STYLE
directive of the major version number of A-code being use by game source. The
significance of the major A-code version in save game compatibility.

	Style 1 is Dave Platt's original A-code of Adv550

	Style 2 is Make Goetz's slightly different A-code of Adv580

	Styles 3 to 9 were development stages of Mike Arnautov's Adv660

	Style 10 is the A-code version of the finalised code of Adv660

	Style 11 was for a while the A-code of Mike Arnautov's Adv770, until
save game compatibility got broken by some technical developments.

	Style 12 is the current A-code of Adv770

If not explicitly declared, the default style is assumed to be the
currently highest one supported by the A-code engine being used.

A note on conventions and notation

All A-code documentation uses the following notation:

	A-code statements are case insensitive. This documentation uses upper case
except when providing code snippets – that is just to make such statements
to stand out against other text.

	A-code lexical elements (tokens) are separated by spaces and/or commas. By
convention, the operator (the first token) is separated from its arguments
simply by a space (or several spaces), while its arguments are separated by
commas followed by a space (or spaces). E.g. "APPORT BOTTLE,
YLEM".

	Angled brackets (< and >) are used to denote a generic name or
value, to be substituted for as appropriate. Thus, e.g., "SET
<varname>, <value>" is a generic form of statements such as,
e.g., "SET COUNT, 1".

	Square brackets ([and]) are used to indicate optional arguments. For
example "LOCAL <varname1> [, <varname2> [...]]
"
indicates that more than one local variable can be declared in a single LOCAL
statement.

	Ellipsis ([...] or just ...) as in the above example, is used to show that
the preceding element can be repeated.

	Curly brackets ({ and }) are
used to denote mandatory items permitting some alternatives, such as "SET
<entity>, {<entity2>|<state>|<constant>}".

	The word "entity" is used as a collective noun for any
declared elements, which are not mere synonyms for numerical constants.

Source file naming.

All A-code source file must have the mandatory suffix .acd. However,
in using A-code tools or when using the A-code INCLUDE directive to
include another source file, this suffix may be omitted – it will be
automatically added by the software.

A-code program structure.

At the highest conceptual level, an A-code program falls into four
distinct parts:

	Header statements giving game information, (optional)

	Declarations of game-specific constants, entities and procedures (also
optional)

	Code to be executed once, on game's invocation (mandatory, but may be
empty)

	The main code loop, usually prompting the player for commands, and
processing those commands (mandatory)

Thus the simplest A-code program looks like this:

init # There is actually no initial code
repeat # Main loop...
 stop # ... consisting simply of the instruction to terminate the game

And here is the obligatory Hello World code:

init
 say "Hello world!"
repeat
 stop

In practice it is often convenient to have more than one INIT and REPEAT
sections, which are executed in the order of their declaration.

Major (or declarative) directives fall into three categories: header ones,
translator directives (or pragmas) and entity declarations. With a single
exception, they can occur in any order. All major A-code directives
(translator instructions and declarators) must start in column one. All other
lines of A-code source must be offset from the beginning of the line by one or
more tabs or spaces.

Other source lines are either parts of declaration, or lines of code. The
latter have the form of a minor directive (a.k.a. opcode), possibly followed
by some arguments. Code line tokens are separated by commas and/or spaces. The
convention of using comma-space separators is not mandatory.

A-code lexical items

A-code lexical items fall into three categories:

	Major directives (or opcodes)

	Minor directives (or opcodes)

	Ad hoc modifiers to minor directives

Major directives come in three flavours:

	Header statements describing game name, author, date etc...

	Pragmas, which affect the way the game source is treated by any software
processing it (e.g. an instruction to include a separate source file in place
of the INCLUDE pragma).

	Declarations of game elements, such as location, objects, procedures
etc. Forward declarations are allowed! That is, a game entity may be
referenced before it is declared.

Minor directives are, with one exception (the LOCAL opcode, declaring local
variables of a procedure) instructions for performing some action
(e.g. SET STATUS, 1) and are used to write A-code procedures.

Types of declared elements

Elements manipulated by A-code are variables, objects, places, texts,
words, procedures, flags, states and constants. All declared elements are
global in scope, except for local variables and procedure arguments, both of
which are local to the relevant procedure.

Some elements (specifically flags, states and constants) are merely
synonyms for integer values. Procedures (or procs) are a category of their
own. All other elements are entities in their own rights and are referred to
collectively as entities in this document.

In its current implementation, A-code makes no distinction between
vocabulary verbs and nouns, allowing e.g. "cage" to be treated as
either, depending on context. However, the basic form of a player command
is verb optionally followed by a noun. Thus in the context of parsing
player commands "verb" and "noun" will be used, referring
respectively to the first and second words of player command.

Any source line, which is not a part of a text or a place.object
description is considered to be terminated by a hash (#) sign. Thus # can be
used to provide comments, including in-line comments. (This convention holds
for A-code version 10 and higher -- earlier versions had different convention
for comments.)

Declared element names are subject to these rules:

	All names are case-independent.

	Names may not contain blanks or other "white space" characters
(such as tab, end-of-line etc.).

	Unless UTF8 encoding is being used, all names must start with an alpha
character, a dot or a question mark.

	Unless UTF8 encoding is being used, The rest of the name characters may
be any of: an alpha character, a digit, dot (.), dash (-), underscore (_)
shriek (!), single
quote ('), ampersand (&) and forward slash (/).

All declared (or automatically declared) elements other than
states, flags or constants are automatically assigned a "reference
number", or refno for short. You do not need to worry about
specific refnos, but it is useful to understand that (a) they exist and (b)
how they are assigned.

Refnos are assigned separately for each type of entity, consecutively in
the order in which elements are declared in the source code. Thus e.g.
objects will have consecutive refno value, even if their declaration is
interspersed with declarations of other entities. Refnos can be
thought of as "addresses" of relevant entities and, indeed, can be
used as such.

Unlike other entities, texts can be declared nameless. Such texts can be
accessed and manipulated via refno offsets from the nearest preceding named
text. (Note, however, that this feature is deprecated in favour of using text
switches.) In-line texts are also permitted. See the A-code texts description later in this
document.

Entities other than vocabulary words also have attributes other than their
assigned refnos. They have a value (a short integer) and a bit-screen
of binary flags. Objects, places and texts have further attributes
appropriate to their type. These will be covered when describing declarations
of such entities.

All entity values are automatically initialised to zero and all flags are
automatically set to false on program start-up.

Places and vocabulary words can have (and generally do) have procedures
associated with them via the AT and ACTION major directives (see below).

Flags

Flags are binary yes/no properties (bits in entity bitscreen), referred to
by symbolic names. A flag's value is simply a bit-screen offset. There are
three separate categories of flags. One is defined for objects, one for places
and one for variables. Each entity has its own instance of the
appropriate kind of a flag set. There are no limits on the number of flags in
a flag set.

Even within a given set, each individual flag can have several different
names, allowing for the greater legibility of the source. Since alternative
names are usually required for variable flags, several different variable flag
sets can be defined (as opposed to only one for each the object and the place
flag sets). The actual variable flag set is simply the biggest of these, with
individual flags having synonymous names as defined in different set
definitions. Don't worry if this makes little sense - it will eventually.

Constants

A-code constants come in several flavours, but fall into two simple types:
numerical (integer values only) and symbolic. Where a integer value has been
given a symbolic name, this can be used interchangeably with the actual value
it names.

The various constant flavours are:

	Numerical integer values (signed short integers)

	Symbolic names of such values, declared as CONSTANT for ease of
reading game sources.

	Some entities (places, objects, variables and texts) each have a state
(a.k.a. value) associated with them. These can be named by using STATE
declarations. The only difference between a state and a symbolic constant is
that the former cannot be negative.

	Some entities (namely objects, places and variables), also carry a
bitscreen of binary flags. Symbolic names should be given to individual flags
via FLAGS declaration – these are effectively just symbolic names for
bitscreen offsets (necessarily non-negative).

Flag names differ
from state names in some important ways. Firstly, there can be only one set of
flags associated with locations, whereas a number of multiple flag sets can be
declared for objects and variables. Secondly, the distinction between object,
place and variable flag sets is used as part of syntax checks. Thirdly, the
system uses flag declarations to work out sizes of bitscreen required
respectively by objects, places and variables.

	Finally, there are compound constants. These are deprecated.
See the deprecated features section for a brief
explanation.

Variables

Variables are symbolically named entities, each with a state and an
instance of the variable flag set. There are some mandatory variables (e.g.
HERE, see below), but any number of additional variables can be declared by
the programmer. Words entered on the command line are available through the
special mandatory variables ARG1 and ARG2 (and ARG3, currently used for
handling of EXCEPT, but available for a future parser use of holding command
instrument). This generally restricts A-code to simple verb/noun commands,
even though the parser makes this less then obvious, permitting apparently
complex commands such as e.g. DROP ALL BUT LAMP AND ROD THEN EXIT (see the parser section for an explanation of the way
player commands get parsed).

It is important to understand that the ARGn variables are unlike any
others. They have the appropriate player command word associated with them
regardless of the actual variable value (unless the value is -1, meaning "no
word"). This makes error handling possible, because variable value can be sat
by the parser to an appropriate error code, while embedding the variable in a
text to be displayed, actually embeds the corresponding command word.

A special form of variable declaration is an array. In A-code this
has a very limited, simple meaning: declaring an array of n elements declares
a variable of the given name, followed by n-1 anonymous variables. (See below
on handling of anonymous entities).

An automatic indirection occurs for some A-code directives when
manipulating variables into which "addresses" (refnos) of other entities have
been loaded. Generally speaking this happens for non-arithmetical manipulation
of variables.

Texts

Texts are named, nameless, or in-line entities representing a piece of
text. Any amount of text can be associated with a text entity. Generally
multi-line texts are considered to be unformatted, line wrapping and filling
being done by the A-code kernel at run time. However, A-code texts are more
than just textual strings. The section on
A-code texts gives their full description.

Procedures

A-code procedures are unusual in that there can be any number of procedures
sharing the same name. Such procedure groups are executed in the order of
their occurrence in the source (i.e. in the order of their refnos).

Procedures come in 5 varieties:

	Initialising ones, declared as INIT. These form a procedure group, which
gets executed on game startup.

	Main loop, declared as REPEAT. These form a procedure group executed
repeatedly after the INIT procedure group execution is completed.

	"Free-standing" declared as PROC (or PROCEDURE). These
procedures are all named. Procedure arguments (if any) are specified on the
declaration line after the procedure's name. If two or more form an
identically named procedure group, they must all have the same number of
arguments.

	Associated with a place and declared as AT (as in "at
such-and-such-place"). Their names are in fact names of relevant
locations. No arguments are allowed.

	Associated with a vocabulary word and declared as ACTION. The name of such
a procedure is the vocabulary word in question (or equivalently, any of its
synonyms). Arguments are allowed and, perhaps surprisingly, procedures in the
same procedure group will have different arguments and even different number of
arguments. See the minor directive ACTION below for details.

Places

Places are symbolically named entities, each with a state, an instance of
the place flag set, up to three different unnamed texts (brief, long and
detailed descriptions) and a "hook" for unnamed chunks of A-code to be
associated with the place. By default symbolic place names are not available
in the player vocabulary, but each such name can be specifically forced into
the vocabulary by prefixing the name in the place declaration with a plus sign
(+). Any number of synonyms can be defined for a place name, though of course,
there is no point doing this unless such names are forced into the player
vocabulary. All properties of texts (described above) apply to place
descriptions.

Objects

Objects are also individually named (with any number of synonymous names)
and once again, have to their name a state and an instance of the object flag
set each, plus up to three different descriptions (inventory, long and
detailed), but no A-code. Object descriptions also obey the rules common to
any kind of text. Object names (and synonyms) do get entered into the player
vocabulary by default, but it is possible to exclude any specific object name
by prefixing the object name in its declaration with a minus sign (-).

Words (a.k.a. verbs, a.k.a. nouns)

Words have symbolic names (with synonyms) and each is associated with one
or more chunks of A-code. By default, verb names are added to the vocabulary,
but again, any specific name can be excluded. It is sometimes useful to have
"dummy" verbs for internal house-keeping, but not available to the player.
This is again achieved by prefixing the verb name with a -, in the verb
declaration.

As noted above, some of the entity names are automatically or selectively
added to the player vocabulary.

To summarise, vocabulary words consist of: all explicitly defined
words/verbs/nouns and their synonyms, all object names and their synonyms not
explicitly excluded and some those place names which are explicitly included.
The vocabulary section gives a full
description of A-code vocabulary.

Major A-code directives

Major directives are either declarations or translator instructions. They
must start in the first column of a line – that's how they are recognised in
the first place, since everything else must be indented. The indentation depth
is arbitrary – the convention of 9 leading spaces and subsequent indents of
three spaces at a time is not mandatory.

Pragmas

Firstly, there are two major directives, which are in fact translator
instructions:

	INCLUDE <file>

	read commands from indicated file until end of file,
then revert to reading from the previous file. Include files may be nested
down to 10 levels.

	INCLUDE? <file>

	conditional include – includes the file if it exists. If it does not
exist, this directive is simply ignored. Given the fact that A-code permits
forward declarations and supports procedure groups, this pragma can be used
for optional addition of new commands or modification of existing commands
– a feature used extensively by Adv770 to provide the optional Wizard
(debug) mode.

Game info, a.k.a header directives

Secondly, there are six game information directives, all of them optional.

	NAME <game-name>

	names the game (a.g. adv770). If not specified, the game's name is taken
to be the name of the file given to the acdc translator, less the .acd
suffix.

	VERSION <version>

	specifies game's version. Traditionally this has the format of two numbers
(major and minor versions) separated by a dot (.), however, this format is not
enforced. If omitted, the current year is used as the game's version.

	DATE <date>

	gives a free-format specification of the date of this version of the
game.

	AUTHOR <author-name>

	name the game's author (also free format).

	STYLE <style>

	specifies the A-code style, i.e. the major version number of A-code in
which the game is written. If used, directive must precede any non-header
directives. If omitted, style is set to the major version of the acdc
translator used to convert the game's A-code source into ANSI C.

 Style
1 is reserved for Dave Platt's original code of Adv550. Style 2 is similarly
reserved to Mike Goetz's Adv580 (an expansion of Adv550). Styles 3 to 9 are
not in use. Style 10 is reserved for Adv660.

	UTF8

	signals use of the UTF8 character encoding in the game's A-code
source. This directive is only required if the game uses UTF8 characters
in its entity names or vocabulary words.

(There are also a couple of header directives (GAMEID and DBNAME) which are
obsolete and only supported in style 10, i.e. in Adv660.)

Declarations

The remaining major directives are all declarators.

 Other than the flags, states and constants, all declared entities are
 associated with a "reference number" (refno) and are internally referenced
 by A-code only by this number. The reference numbers of entities of
 the same kind (e.g. objects, places, texts, variables...) are guaranteed to
 be lumped together into an unbroken numerical interval, with their reference
 numbers incrementing by one in the order in which the entities are declared.

 To reiterate: within each declarative category (e.g. objects, places, texts)
 entities are stored sequentially in the order of declaration and hence can
 be referenced via refnos by numerical offsets from other entities.

 It is not necessary for the game author to be aware of the reference numbers
 of declared entities, but it is helpful to be aware of this arrangement in
 general terms.

 Reference numbers are used to achieve indirection in A-code. They can be
 loaded into variables, which are then recognised by most opcodes as
 "indirectors" so that the opcode is actually applied to the entity whose
 reference number the variable stores. This does not apply to arithmetical
 opcodes, making it possible to do "reference number arithmetic". This
 allows, for example, referencing nameless texts by offsets from other named
 texts, and has other uses too. It is not necessary to know the
 "reference number" of an entity, in order to load it into a variable.

	FLAGS {VARIABLE|OBJECT|PLACE}

	
 starts the declaration of a flag set of the appropriate kind (variable,
 object or place). It is followed by any number of indented lines, each
 declaring a symbolically named flag in the set, optionally followed on the
 same line by synonymous names. Only one object and place set declarations
 are permitted, but any number of variable set declarations are allowed.
 (They are equivalent to a single declaration with flags declared on
 corresponding lines being synonymous with each other).

	STATE [value] statename [...]

	
 is used to declare symbolic names for entity states. It makes "statename"
 synonymous with the value preceding it, or with zero, if the value is
 absent. A STATE directive can be followed by any number of indented lines of
 the format " [value] statename", which declare further state names to be
 synonymous with the corresponding value, if given, or with the value of
 "statename" defined on the preceding line plus 1. Note that the STATE
 directive deliberately does not specify which entities the defined
 statenames relate to, allowing for partial state sequences to be shared by
 different entities. "Value" can be a number, a previously declared constant,
 a previously declared entity (in which case the "reference number" of the
 entity is used) or several such, combined into a simple expressions with
 plus (+) and/or minus(-) signs, without any separating blanks.

	CONSTANT [value] constname [...]

	
 This directive is in fact exactly synonymous with the STATE directive. It is
 used simply to indicate that the symbolic constants being defined are
 general purpose constant and not entity state names. The two are completely
 interchangeable.

	TEXT [textname]

	
 declares a piece of text, which may be associated with a text name or be
 "anonymous" (available only by offset from some named text). The TEXT
 directive is followed by one or more lines of text, which must not
 start in column 1 (anything starting in column 1 is taken to be a major
 directive -- it follows, that all leading spaces are ignored). A-code texts
 are very rich entities. Please see the section
 on A-code texts for details.

	FRAGMENT textname

	
 Identical to the TEXT directive, except that the text is not terminated by a
 new line. I.e. it is a text fragment.

	PLACE [+]placename [...]

	
 declares a location. By default, "placename" is not entered into the player
 vocabulary, unless prefixed with a '+' (which does not count as a part of
 the name). Synonymous names can be declared on the same line.

	
 Each location declaration is optionally followed by a piece of text
 (following all the text rules described above), comprising up to two
 different descriptions – the brief one and the full one – and
 terminated by a major directive. Insofar as these do description components
 occur – they occur in that particular order. The brief description (if
 any) immediately follows the PLACE line and is terminated by a text line
 starting with a '%' or a major directive. The full description (if any)
 starts with a line beginning with '%' and is terminated by the next major
 directive.

	
 If the full description is missing and the brief one is present, the full
 one defaults to the brief one. It is possible for a location to have no
 description at all. The '%' delimiter is not itself considered to be a part
 of the description. If a text switch is encountered in a description being
 displayed, the current state of the location is used as the switch
 qualifier. Thus for example

	PLACE +TUBE
 You're in lava tube at top of chimney.
 %You're at the top of a narrow chimney in the rock. A cylindrical tube
 composed of hardened lava leads south and northwest[/, from where
 comes some][/silvery /day/orange][/light, providing a dim
 illumination to this place].

	
 All special trickery described in the A-code
 texts section applies to place descriptions as well.

	OBJECT [-]objname [[=]objname ...]

	
 declares an object. By default, "objname" is entered into the player
 vocabulary, unless prefixed with a '-' (which does not count as a part of
 the name). Synonymous names can be declared on the same line. These can be
 prefixed with a '=', indicating their re-mapping to the last synonym not so
 prefixed, which, in fact may be a string (see the example below), which
 is not itself entered into the game's vovabulary.

	
 Each object declaration is optionally followed by a piece of text (following
 all the text rules described above), comprising up to three different
 descriptions – the inventory one, the full one and the detailed one -
 and terminated by a major directive. Insofar as these three description
 components occur – they occur in that particular order. The inventory
 description (if any) immediately follows the OBJECT line and is terminated
 by a text line starting with a '%', '&' or a major directive. The full
 description (if any) starts with a line beginning with '%' and is terminated
 by a line beginning with a '&' or by the next major directive. The
 detailed description (if any) starts with a line beginning with a '&'
 and is terminated by the next major directive. E.g.

	OBJECT "nest with eggs in it", =NEST, =EGGS
 Nest with golden eggs
 %There is a large nest here, full of golden eggs!
 &The nest holding the eggs is lined with some sort of bird down - might
 be goose, but I am not sure. The eggs themselves gleam dully in the
 light with the unmistakable gleam of pure gold.

	
 If the full description is missing and the inventory one is present, the
 full one defaults to the inventory one. If the detailed description is
 missing, it defaults to the full one, if that is present, or to the
 inventory one, if the full one is absent and the inventory one present.

	
 It is possible for an object to have no description at all. The '%' and
 '&' delimiters are not themselves considered to be a part of the
 description. If a text switch is encountered in a description being
 displayed, the current state of the object is used as the switch qualifier.

	
 All special trickery described in the A-code
 texts section applies to place descriptions as well.

	NOISE word [...]

	 NOISE declares words to be ignored when parsing player's input.

	VERB [{-||}]verbname [synonyms]

	
 Declares a word "verbname" (optionally with synonyms), which is (by default)
 entered into the vocabulary available to the player. The optional minus sign
 prefixing the principal verb word stops the verb being available in the
 vocabulary. Such dummy verbs have two separete uses. I only the principal
 name is given, the word is useful for range checking within the vocabulary
 and bracket groups of verbs of a similar kind (e.g. movement directions).
 Synonyms to such excluded words can be used in replacing words that have to
 be know to the kernel (such as AND, THEN or AGAIN) with non-English
 alternatives. See the internationalisation
 section for details.

 VERB is currently synonymous with NOUN and
 WORD. Adjectives and prepositions are not currently supported. Distinction
 between different word types are up to the game's code.

	ACTION verb [objname]

	The major directive ACTION is used to associate chunks of A-code (procedures) with
individual verbs. More than one procedure can be assigned to the same verb and
they are executed in the order of their declaration. If the optional object
name is given, that particular action procedure is skipped, unless the object
in question features in player's command.

	VARIABLE variable [...]

	 defines one or more variables. Note that variables defined on one line
like this are not synonymous. By convention, related variables tend to
be defined in a single VARIABLE directive.

	ARRAY arrayname constant

	 defines a consecutive block of variables of the size given by the
constant. The first of these is named by the array name, the rest are
anonymous – accessible only via refno offsets from the array's base

	PROC procname [arg ...]

	 defines a chunk of A-code (a set of executable code) called "procname".
The procname can be followed by a list of arguments, which are passed by value
when the procedure is called. The subsequent lines contain the code, terminated
by the next major directive.

	AT placename

	 defines code to be executed when the player is at the indicated place -
the following lines contain the actual code. More than one AT procedure may be
defined for a particular place – they are executed in the order in which they
are declared in the A-code source.

	INITIAL

	 defines once-only code to be executed at initialisation time. Multiple
INITIAL commands may be used and are executed in the order encountered.

	REPEAT

	 defines the main action-processing code that is executed during each
player input. After the INITIAL code has been executed, the REPEAT statements
are executed. Once the last REPEAT statement is executed, the program loops
back and starts again with the first.

Each of the above "major directives" must appear in column 1. A major
directive embraces all following lines up to but not including the next
major directive statement (i.e., all lines in which column 1 is blank) or
the end of the source file in which it occurs.

Special entities and flags

Not all entities or flags need to be declared explicitly. Some are
"automatic" and some are "optional"

"Automatic" means that the entity is declared automatically.
Automatic entities may be explicitly declared by the program, but if so, must
be of the correct type. If an entity of that name is declared as some other
type, this is treated as a compilation/translation error.

"Optional" means that the entity may but need not be declared by
the program. If declared, it has a special meaning. An entity of that name but
of a different type is treated as a compilation/translation error.

INHAND automatic location
Use: contains all objects currently
carried by the player; contents are maintained by the kernel but can be also
accessed and modified by the game's code.

STATUS – automatic variable
Use:
set by the kernel to indicate the number of words in the player's
latest command.

Can be set by the program to various values in order to pass information
to the kernel.

Possible values:
BADSYNTAX – automatic state
Use: set by the kernel if the current player command
cannot be parsed.

NO.MATCH – automatic state
Use: set by the program to indicate that no abbreviation
or approximate matching is to be performed on the next player command.

NO.AMATCH – automatic state
Use: set by the program to indicate that no approximate
matching is to be performed on the next player command.

value -1
Use: set by the kernel to signal game restore on
start-up.

Flags:
FULL.DISPLAY – optional flag

TERSE.DISPLAY – optional flag

MOVED – optional flag
Use: set by the kernel whenever player's location changes.

JUGGLED – optional flag
Use: set by the kernel if player's inventory has changed.

PLS.CLARIFY – optional flag
Use: set by the game's code in order to trigger orphan
processing of next player input; cleared by the kernel as a part of
orphan processing. (See the description of the
A-code parser for an explanation of orphan processing of commands.)

HERE – automatic variable
Use: set by the kernel to the refno of the player's
current location.

THERE – automatic variable
Use: set by the kernel on a change to player's location
to the refno of the location prior to the change.

ARG1 – automatic variable
 Use: set by the kernel to the refno
of the player command's verb

Possible values:
BADWORD – automatic state
Use: set by the kernel if the word is not understood.

AMBIGWORD – automatic state
Use: set by the kernel if the player's word can be an
abbreviation of more than one vocabulary word.

AMBIGTYPO – automatic state
Use: set by the kernel if the player's word can be
matched as a typo in more than one way

SCENEWORD – automatic state
Use: set by the kernel if the player's word is not found
in the vocabulary but matches a word (in excess of three characters) in the
latest location description or in a text displayed since
the last move.

ARG2 – automatic variable
Use: set by the kernel to the refno of
the player's noun (if any) or zero otherwise.

States: (as ARG1)

ARG3 – automatic variable
Use: At present used solely for EXCEPT
processing. If player's command is of the form "<verb> ALL EXCEPT
<list>", ARG3 may be set by the kernel to BADWORD, AMBIGWORD or
AMBIGTYPO, if appropriate.

CONTEXT – optional variable
Use: avoid use of the QUERY minor
directive in game builds which require single-turn operation (see the
section on A-code game build modes).
 Value:
If non-zero, indicates the current command to be a response to a query, the
value (as set by the program) indicating the nature of the query.

Flags:
PROMPTED – automatic flag
Use: set by the kernel if the player has been
prompted.

ENTNAME – optional variable
Use: when processed by the SAY
directive, shows the symbolic name of the entity to which ENTNAME is set
to point.

Value: a pointer to a named entity set by game's code.

Use of ENTNAME has the two side-effects:

	
It stops the dot character ('.')
acting as a player command separator, permitting reference to entity names
containing this character.

	
It a player command word is not found in the games vocabulary, game entity
names are also searched by the parser; only exact matches are accepted
– no abbreviations and no typo matching.

The variable is intended for game debugging
in the wizard mode. See the section on
debugging A-code games.

TYPO – optional text
Use: enables single-typo matching of player commands
against the games vocabulary.

The TYPO text must contain a switch of 4 (or a multiple of four) components.
It is used by the kernel to explain a typo match to the player. Regardless
of the number of components, it must be declared as

FRAGMENT CYCLE TYPO

The first three components in each foursome must contain one word holder
(#). The four switch components (in any of the switch quads if there are more
than 4 components) are used by the kernel as follows:

	Shows original player word that got typo-corrected

	Shows the typo-corrected version for what the player gave

	Shows the full non-abbreviated matched word if typo-corrected version is
an abbreviation.

	States that the corrected version is assumed

Here is an example from Adv770:

FRAGMENT cycle TYPO
 [Sorry, the word "#" is not familiar to me./ I'll just assume you
 meant "#"/, i.e. "#"/./
 Regretfully, I don't have "#" in my dictionary./ But I do know
 "#"/, as in "#"/, so I'll assume you meant that./
 The word "#" is not one I know./ Let's assume you meant "#"/,
 meaning "#"/./
 I wonder what "#" might be.../ I guess it could be mistyped
 "#"/, i.e. "#"/, so I'll assume that was what you meant.]

UNDO and REDO optional verbs.
Use:
Their presence activates the A-code undo/redo facility,
enabling players to undo a specified number of last commands and, if
necessary, undo some or all of this undoing. This is described in
the section dealing with undo/redo.

UNDO.STATUS – optional variable
Use: set by the kernel to indicate the number of commands
undone or re-done, which need not be the number requested by the player.
If the variable is declared, the below flags are declared automatically:
UNDO.INFO – automatic flag
Use: Can be used by game code to note that player has
been advised of rules for using undo; set to off by default and
ignored by the kernel.

UNDO.TRIM – automatic flag
Use: maintained by the kernel: if set, the level of
undo/redo was found to be excessive and had to be trimmed to match the
existing undo history.

UNDO.INV – automatic flag
Use: maintained by the kernel: if set, the player's
inventory has changed as the result of undo/redo.

UNDO.BAD – automatic flag
Use: maintained by the kernel: if set, undo/redo failed.

DWARVEN – optional variable
Use: If set to non-zero, all text
output by the game is shifted circularly one position up in the alphabet and
all player input is shifted one position down. If set to zero, any portion of
game text delimited by % signs is output shifted one position up.

PROMPT – reserved optional variable
Use: none at present. Reserved for
specifying non-standard prompt.

SCHIZOID an automatic object flag
Use: Indicates that the object is to
be treated as present in its current location, and also in the
immediately succeeding one (i.e. the one with the refno one higher).

Minor A-code directives (a.k.a. opcodes)

The actual A-code code consist of minor directives (or opcodes) followed by
their arguments (if any). A line of code cannot have more than a single opcode
line.

The following is a list of the available opcodes and a quickie description
of what they do. As noted previously, in some cases if an argument is a
variable, it is automatically de-referenced – i.e. the operation
indicated by the opcode is applied not to the argument but to the entity
referenced by the argument. Any such opcode arguments are denoted by a
trailing asterisk in the following summaries.

Local variables

	LOCAL varname [varname...]
 	Declares correspondingly named
variables local to a procedure. It must immediately follow either the major
directive declaring the procedure in question, or another LOCAL declaration.
Local names pre-empt any identically named global variables. Local variables
are dynamically initialised to zero value and zero bitscreen whenever the
procedure is entered. They do not exist outside the procedure.

Local variables are not a part of the data set saved/restored by saving
or restoring a game image. Thus they can be used to preserve some values
over a game restore, instead of using the (now obsolete) EXEC 6 and
EXEC 7.

Conditionals

All conditional structures have the basic form of

conditional, some code, FIN

conditional, some code, ELSE, some code FIN

where the immediately following block of code is executed if the
conditional is true, and the block following ELSE (if present) is executed if
it is false.

In order to avoid deeply nested indentation in source code, A-code
also features OTHERWISE, analogous to C's "else if" or Perl's elsif. Thus

 some condition
 some code
 ELSE
 some condition
 some code
 ELSE
 some condition
 some code
 FIN
 FIN
 FIN

can be equivalently written as

 some condition
 some code
 OTHERWISE
 some condition
 some code
 OTHERWISE
 some condition
 some code
 FIN

The following conditionals are available:

(A quick reminder: the value of a place or an object, is its state;
however, variables (local or global) can be "pointers", i.e. have the refno of
some entity is loaded into them. In the below, variables, which are in fact
pointers are represented as "varname*".)

value of a variable is either just that value or (if indirection is indicated

	IFEQ {entname1|const1}, {entname2|const2}

	True if the value of the first argument is equal to the value of the
second argument.

	IFNE {entname1|const1}, {entname2|const2}

	True if the value of the first argument is not equal to the value of the
second argument.

	IFLT {entname1|const1}, {entname2|const2}

	True if the value of the first argument is less then the value of the
second argument.

	IFLE {entname1|const1}, {entname2|const2}

	True if the value of the first argument is less then or equal to the value
of the second argument.

	IFGT {entname1|const1}, {entname2|const2}

	True if the value of the first argument is greater than the value of the
second argument.

	IFGE {entname1|const1}, {entname2|const2}

	True if the value of the first argument is greater than or equal to
the value of the second argument.

	IFINRANGE {entname|constant} {entname|constant}
 {entname|constant}

	True if the value of the first argument is greater or equal to that of the
second argument, but less or equal to the value of the third one.

	CHANCE {entname|constant}

	True with the probability of n%, where 'n' is the value of the
argument.

	IFHAVE {objname|varname}* [{state|flagname}]

	True if the player is holding the specified object. If the second argument
is supplied, the object also has to be in the specified state or have the
specified flag set.

e.g. if THING is a variable,

 LDA THING, BOTTLE
 IFHAVE THING

will be true if and only if the bottle is in the player's inventory. Of
course,

 IFHAVE BOTTLE

will have the same effect in this particular example.

	IFHERE {objname|varname*} [{state|flagname}]

	True if the specified object is at the same location as the player. If the
second argument is supplied, the object also has to be in the specified state
or have the specified flag set.

	IFNEAR {objname|varname}* [{state|flagname}]

	True if the specified object is held by the player or is in the same
location as the player. If the second argument is supplied, the object also
has to be in the specified state or have the specified flag set.

	IFFLAG {entname|varname*} flagname

	True if the specified entity has the corresponding flag set. If a flagless
entity is specified, the test returns FALSE.

	IFAT {placename|varname*} [...]

	True if the player is currently at the one of the specified locations.

	IFLOC {objname|varname1}*, {placename|varname2*} [...]

	True if the object specified by the first argument is at one of the the
specified locations.

	IFIS varname, {objname|placename|varname*} [...]

	True if the named variable is a pointer to one of the specified objects
or locations.

	IFKEY word [word]

	True if all specified words appear in the player's command.

	IFANY word [word...]

	True if any of the nominated words appear in the player's command.

	QUERY {textname|varname*}

	Displays the nominated text, which should be a yes/no question, and gets
player response. Set to true if the answer is yes and false otherwise.
CAUTION this directive is incompatible with library and
single-turn modes (and thus incompatible with the HTML/JavaScript build, which
uses the library mode). If such modes are to be supported, use the CONTEXT variable mechanism instead.

	IFHTML

	True if the game is running in a mode in which its output is formatted
as HTML.

	IFCGI

	True if the game is running in a cloud via a CGI interface.

	IFDOALL

	True if the game is processing a DOALL command loop.

	IFTYPED

	True if the player actually typed the string given as an argument, as one
of the command words.

Thus for example

 IFTYPED W

will be true only if the player typed W rather than WEST, even though
W is interpreted as WEST.

	IFNEEDCMD

	True if there are no more pending simple commands to process, i.e. the
player is about to be prompted for a new command. This is useful e.g. to avoid
interrupting processing of a compound command with a spontaneous offer of
help.

Logical operators

Now for some logical operators, to string the tests together, creating
"compound" conditions. Note that tests are executed in the order in which they
are encountered, with no precedence rules for operators and no bracketing.
So, conceptually, A and B or C and D is understood as ((A and B) or C) and D.
This may be unusual, but is, in fact surprisingly natural (or at least I
found it so :-)).

	AND

	 "And" the test results so far with the following test.

	OR

	 "Or" the test results so far with the following test.

	XOR

	 "Xor" the test results so far with the following test.

	NOT

	 Invert immediately following test.

Logically enough, here are delimiters for conditional code.

	ELSE

	Execute the following code, up to the next FIN, if the latest
(compound) condition returned false.

	OTHERWISE

	An equivalent of "else if" in C or elsif in Perl. Useful for
avoiding deeply nested if-then-else constructs.

	FIN

	 Delimits the code associated with the most recent (compound) condition.
Can be used interchangeably with EOI.

Iteration

Next come the opcodes to do with iteration.

	ITOBJ varname [{placename|varname*}] [objflag]

	 Execute the following code up to the matching FIN repeatedly, with the
value of the nominated "loop variable" becoming a reference to objects
satisfying the optional location and/of flag/state constraints (or all object,
if no constraints specified) in the order of their declaration.

	ITPLACE varname [{placename1|varname1*}, {placename2|varname2*}]

	 Execute the following code up to the matching FIN repeatedly, with the
value of the nominated "loop variable" running through the specified range of
locations (default all declared locations) in the order of their
declaration.

	ITERATE varname, {entname1|varname1*|const1}, {entname2|varname2*|const2}

	 Execute the following code up to the matching FIN repeatedly, with the
value of the nominated "loop variable" running through all values from
entname1 to entname2 inclusive. If either of the two range delimiting entnames
is a variable, its value is used as the appropriate loop boundary (this may
but need not be the reference number of some other entity). If either is a
constant, the value of the constant is used. Otherwise the reference number of
the nominated entity is used.

	NEXT

CONTINUE

	 Skip the rest of the iteration block and proceed with the next iteration
loop.

	BREAK

LAST

	 Break out of the innermost iteration block.

	DOALL [{placename|varname*}] [objflag]

	DOALL starts
off a do-all loop, in which the REPEAT cycle is repeated, but instead of
querying the player for input, input is constructed out of the verb in ARG1
and the next object fitting the specified criteria. The loop is terminated
either when no more objects fit the criteria or when the FLUSH directive is
executed.

	FLUSH

	Abort the do-all loop if one executing and flush the command line buffer

Execution flow control

	CALL {procname|placename|verbname|varname*}

	Execute code associated with the named entity, which may consist of one or
more separate, identically named chunks of code. These are executed in the
order of their declaration, until either none left or one of RETURN, QUIT
or QUIT-implying opcodes is executed in one of them.

	PROCEED

	Terminate the execution of the current procedure. If the procedure is one
of a group of procedures of the same name, the next procedure in the sequence
(in the order of declaration) is executed.

	RETURN
	

	Terminates the execution of the current procedure and of all procedures
within the group of procedures of the same name

	QUIT

	Abort execution of the current procedure and restart the REPEAT loop at
the first REPEAT procedure.

	STOP

	 Terminate the whole program immediately.

Moving player and objects

	APPORT {objname|varname*} {placename|varname2*}

	Transport the indicated object to the indicated location.

	GET {objname|varname*}

	Transport the indicated object into the player's hands. Equivalent to
"APPORT {objname|varname*}, INHAND".

	DROP objname*

	Transport the indicated object (presumed to be in player's hands (location
INHAND) to the same location as the player).
Equivalent to

 IFAT {objname|varname*}, INHAND
 APPORT {objname|varname*} HERE
 FIN

	GOTO {placename|varname*}

	Transport player to the indicated location.

	MOVE [word [...]] {placename|varname*}

	If no word list supplied or if any of the supplied words appear in the
player's command, transport the player to the indicated location and
restart the main loop (the REPEAT loop).Equivalent to (if a word list is
present)

 IFANY [word [...]]
 GOTO {placename|varname*}
 QUIT
 FIN

	SMOVE [word [...]] {placename|varname1*} {textname|varname2*}

	If no word list supplied or if any of the supplied words appear in the
player's command, transport the player to the indicated location and display
the indicated text, then restart the main loop. If a word list is present,
equivalent to

 IFANY [word [...]]
 SAY {textname|varname1*}
 GOTO {placename|varname2*}
 QUIT
 FIN

Generating and manipulating output

There are several directives for producing text output. All of them can be
"qualified" for the purposes of "#" and "$" substitution and/or of the text
switch mechanism. The VALUE qualifier is mandatory, but both SAY and QUIP can
be used with a single argument. If the argument is an object or a place
(possibly indirectly pointed to through a variable), the current state value
of the object or place is used as the implicit qualifier. See
the section on A-code texts for a full a
explanation.

	SAY {entname|varname*} [{entname|constant}]

	
 Display text associated with the specified entity (text, object, place or
 any of these indirected through a variable). General rules for displaying
 texts are covered in the section on A-code
 texts. However, objects and locations can have up to three separate
 texts applying to them. Please see major directives OBJECT and PLACE
 as well as the minor directive DESCRIBE.

	RESAY {entname|varname*} [{entname|constant}]

	Just like SAY, except that any text accumulated but not yet displayed is
discarded first.

	QUIP {entname|varname*} [{entname2|constant}]

	Like SAY, but perform a QUIT having output the text

	RESPOND word [word [...]] {entname|varname*} [{entname2|constant}]

Like QUIP, but null effect unless one of the listed words is present in the
	player's command.

	APPEND {entname|varname*} [{entname|constant}]

	Like SAY, but it first eliminates any trailing line feeds (if any) in the
output accumulated so far and replaces them with a single blank. That is, it
appends its text to the preceding paragraph.

	DESCRIBE {placename|objname|varname*}

	Outputs the longest available description of the indicated object
or location.

	VOCAB {objname|placename} [flagname] [textname]

VOCAB word {objname|placename} flagname [textname]

VOCAB [textname]

	Used for displaying context-sensitive vocabulary. The first of the above
three formats displays either primary name of the object or place in question,
or the text specified as the last argument, unless the flagname argument is
present and the flag in question is not set for that object or place. For
example:

 VOCAB CAGE, SEEN
 VOCAB DWARF, SEEN, DWARF.VOC

The second format applies to words which are neither places nor objects, but
their listing should be regulated by a flag setting of some object or place.
For example:

 VOCAB CHASM, SW.OF.CHASM, BEEN.HERE

The display, if any, is prefixed with a comma and a space, except for the
first word displayed. The count of words displayed is reset to zero by a VOCAB
directive with no arguments or with just the textname argument.

	TIE textname [textname2...] [entname|textname]

	Ties the value of the text (or texts) to that of the indicated entity
or text. (See the A-code texts section
for an explanation of text values.) The effect is that the value(s) of text(s)
being tied are automatically kept in step with the value of the entity or text
given as the last argument.

Arithmetical operations

 	SET entname {entname|constant}

	Set the value of the entity given as the first argument, to the value of
the constant or entity given as the second argument. Note that no
indirection occurs with this opcode. If the first argument is an "indirector"
variable, SETting it reverts it to an ordinary variable. Use the DEPOSIT
opcode to SET with indirection.

	ADD entname {entname|constant}

	Increase the value of the entity supplied as the first argument, by the
value of the constant or entity supplied as the second. Note, that no
indirection takes place!

	SUB entname {entname|constant}

	Decrease the value of the entity supplied as the first argument, by the
value of the constant or entity supplied as the second. Note, that no
indirection takes place!

	MULTIPLY entname {entname|constant}

	Set the value of the nominated entity to its original value multiplied by
the value of the second argument. Note, that no indirection takes
place!

	DIVIDE entname {entname|constant}

	Set the value of the nominated entity to its original value divided by the
value of the second argument. Note, that no indirection takes
place!

	INTERSECT entname {entname|constant}

	Set the value of the nominated entity to the bit-wise "and" of its
original value and the value of the second argument. Note that no
indirection takes place!

	NEGATE entname

	Set the value of the nominated entity to its original value negated. Note,
that no indirection takes place!

Randomisation

	RANDOM entname {entname|constant}

	Set the value of the entity indicated by the first argument to an integer
chosen randomly from the interval between zero (inclusive) and the value of
the entity or constant given as the second argument (exclusive). E.g. RANDOM
CLOCK 10 will set the value of CLOCK at random to an integer number from 0 to
9. Note that no indirection takes place.

	RANDSEL varname, entname1, entname2, [...]

RANDSELECT varname, entname1, entname2, [...]

	Selects at random (i.e. with equal probability) one of the listed
entities and makes its first argument into a pointer to that entity.

	CHOOSE entnam {entnam2|constant2} {entnam3|constant3}

	 Set the value of the entity indicated by the first argument to a random
integer from the interval indicated by the second and the third arguments. If
these latter arguments are both constants or variables, their values are used
to determine the interval boundaries. However, for any entities other than
variables, the reference numbers of the two entities are used instead. The
randomisation is inclusive of the interval boundary values. E.g. CHOOSE VAR1
20 29 will set the value of VAR1 to a random integer between 20 and 29
inclusive, while CHOOSE VAR1 FIRST.QUIP, LAST.QUIP (where the two "quips" are
not variables but text names) will load into VAR1 the reference number of
an entity (text in this case) randomly chosen from between FIRST.QUIP and
LAST.QUIP inclusive (there may well be some unnamed texts between these
two).

	RANDOMISE {objname|placename}, constant

	Set state of the object or place to a random value between the base lower
bound indicated by the constant (usually 0), and the highest numbered text
switch component in any of the object's or location's description.

Refno manipulation

	LDA varname, entname

	Make the variable specified by the first argument "indirect" to to entity
specified by the second.

	EVAL varname varname

	Set the value of the variable specified by the first argument to the value
of the entity "indirected" through the second argument. Please note that no
check is made to verify that the second argument "indirects" anything
meaningful.

	DEPOSIT varname {varname|constant}

	Set the value of the entity "indirected" by the first argument to the
value specified by the second. Note that no check is made whether the first
argument truly indirects to some other entity.

	LOCATE varname objname*

	Make the indicated variable into an "indirector" for the location
currently holding the indicated object.

Manipulating flags

	FLAG entname flagname

	Switch on the flag identified by "flagname" in the instance of the
appropriate flag set belonging to the indicated entity.

	UNFLAG entname flagname

	Switch off the flag identified by "flagname" in the instance of the
appropriate flag set belonging to the indicated entity.

Communicating with the machine environment

	EXEC {varname|constant}, varname

	Perform a special action, indicated by the value of the first argument,
and return the result in the value of the variable given as the second
argument. This opcode is to do awkward things, which are not allowed for in
A-code opcode definitions or are far easier done in C than in A-code. All
these special actions are performed in the adv00.c procedure special(). As
supplied the following actions can be selected by the appropriate value of the
first argument: the value

	dump game to disc (obsolete – use SAVE FILE instead)

	restore game from disc (obsolete – use RESTORE FILE)

	delete saved game(obsolete – use DELETE FILE)

	Obsolete – Adv550 legacy only (flush game cache)

	Obsolete – Adv550 legacy only (get prime time flag)

	save value of a variable (obsolete – use local variables instead)

	restore value of a variable (obsolete – use local variables instead)

	get number of minutes since restored game saved

	set the value (pointer!) of ARG1

	set the value (pointer!) of ARG2

	pretend player said "X X" instead of "X"

	check for end of player's (possibly compound) command (obsolete –
 use IFHAVECMD instead)

	(spare)

	retrieve a persistent data flag (should be part of IFFLAG?)

	store a persistent data flag (should be part of FLAG?)

	delete a persistent data flag (should be part of UNFLAG?)

	save current location of all objects (should be part of SAVE?)

	retrieve saved location of an object (should be part of RESTORE?)

	toggle output text justification

	set screen width (in fixed font characters)

	set page margin (in fixed font characters)

	set screen height (in lines)

	save player's command (obsolete – use SAVE COMMAND instead)

	restore player's command (obsolete – use RESTORE COMMAND instead)

	(spare)

	(spare)

	{spare)

	recover from failed restore

	swap ARG1 and ARG2

	(spare)

	(spare)

	check object being on the exception list

	check existence of a memory save

	list available saved games

Any number of other special action may be defined, but codes up to and
including 100 are reserved for future use by the engine.

Get and manipulate player input.

	INPUT [{textname|varname*}]

	Input and parse a command, setting the mandatory variables ARG1 and ARG2
to the supplied verb and noun respectively. If only a single word is given and
the mandatory flag PLS.CLARIFY of the mandatory variable STATUS is set, the
supplied word is combined with the last (incomplete) command.

Note that the player is queried for input only if we have run out of the
last command line. There are three circumstances under which the player is not
prompted:

	 He gave several commands separated by full stops or semicolons and we
have not processed the last one yet.

	The last processed command consisted of a verb followed by several nouns
and we haven't yet finished applying the verb to all the nouns. This case does
not preclude case (a) also applying!

	We are in a doall loop, applying the verb of the last processed command to
all objects satisfying the criteria of the DOALL opcode, which started the
loop – and there is at least one more object to process. Again, this
case does not preclude either of the two preceding cases applying
simultaneously.

If the optional argument is supplied, the nominated text is displayed,
before accepting player's input. Whether or not this happens, if the last
printed text was a "fragment", it is pushed out as the prompt and padded with
a space, if required. If the last message was not a fragment, the player is
prompted by the standard linefeed and question mark prompt. Note that this
allows you to have any prompt you like, instead of the standard one.

	FAKEARG [{entname1|varname1*}] [{entname2|varname2*}]

	If player's command refers to an entity referenced (possibly indirectly)
by the first argument, pretend that the reference was to the entity referenced
by the second argument. This directive does not, however, alter the words of
the command.

	FAKECOM [{entname1|varname1*}] [{entname2|varname2*}]

	Like FAKEARG, except that the relevant word in the player's command is
also modified, in case it is echoed back at the player.

	VERBATIM {ARG1|ARG2}

	Replaces the word string associated with ARG1 or ARG2 respectively, with
whatever the player actually used, which got interpreted as whatever word
string that is to be replaced.

	UNDO

	If undo is permitted, undo the number of commands specified by
player command's second word, which may be (a) a number to undo a specific
number of commands, (b) ALL to undo all commands since the last restore, or
(c) UNDO to undo the immediately preceding UNDO. The UNDO_TRIM flag
of the UNDO_STATUS variable is set or cleared appropriately.

	REDO

	Only accepted immediately after an UNDO command. REDO reverts the undoing
of the specified number of commands, which may be given as (a) a number or (b)
ALL which is equivalent to UNDO UNDO. The UNDO_TRIM flag of the UNDO_STATUS
variable is set or cleared appropriately.

	DEFAULT [{placename|varname*}] [objflag]

	If no object has been specified in the player's last command (i.e. if the
value of STATUS is 1), check whether there is an object at the nominated
location (default HERE) and, optionally, has the nominated flag set. If no
such object exists, this directive has no effect. If only one object satisfies
the criteria, ARG2 is set as if the player had explicitly nominated that
object. If more than one object fits the criteria, ARG2 is set to AMBIGWORD.
In either case, the value of STATUS is increased from 1 to 2.

Saving and restoring (file, memory or command)

	SAVE {FILE|MEMORY|COMMAND} varname

	SAVE FILE saves the current state of the game in a file nominated by the
command text string associated with ARG2. SAVE MEMORY creates or replaces
an in -memory save image (this gets written off to disk in ADVLIB and CGI
modes). SAVE COMMAND saves player's parsed command, so that the game
can ask a yes/no (or other) question, without relying on the QUERY directive,
since this directive is not compatible with ADVLIB or CGI modes.

The variable specified by the <varname> argument returns zero on success.
Non-zero return indicates failure.

	RESTORE {FILE|MEMORY|COMMAND} varname

	Restores file, memory image or player command saved by the SAVE directive.

 The variable specified by the <varname> argument returns
zero on success. Non-zero return indicates failure.

	

	DELETE {FILE|MEMORY} varname

	Deletes respectively a saved file nominated by the second word of the
player's command, or the saved memory image (which also can be a file, in an
ADVLIB or CGI modes).

 The variable specified by the
<varname> argument returns zero on success. Non-zero return indicates
failure.

Debugging minor directives .

	CHECKPOINT

	SAYs its location (file name and line number) in the A-code
source.

	DUMPDATA

	
 Dumps game data to STDERR or to the log file if one is being written to. If
 a second command word is given, it is taken to indicate the type of
 value-bearing entites to be shown. Possible values are "objects",
 "locations" or "places"), "variables" (or "vars") and "texts" – all of
 these being abbreviable to a single character. The command is handled by the
 kernel and hence types of dump need not be in the game's vocabulary. Most
 likely use of this directive is in optionally included code – see the
 debugging section for debugging use of
 optional includes.

Obsolete and/or deprecated lexicals and directives

These directives are still supported for compatibility with old versions of
A-code. Some are supported only for style 1 of A-code (i.e. only for Platt's
original source).

	Compound constants
	

	A compound constant is a text string with no spaces, where names of simple
constants or entitynames are joined by plus and/or minus
signs.E.g. LAST.DEFLECTOR-FIRST.DEFLECTOR+2 evaluates as the
value of LAST.DEFLECTOR minus the value of FIRST.DEFLECTOR plus 2. For entity
names the value used in the calculation is the refno of that entity. In this
example from Adv550, the two symbolic names happen to be text names.

	SYNON {value|symbname}, synon [...]

	Used to define symbolic name for constants or synonyms for already defined
symbols.

	BISET {entname|varname*}, flagname

BIS {entname|varname*}, flagname

	Obsolete synonym of FLAG.

	BITST {entname|varname*}, flagname

	
BIT {entname|varname*}, flagname

	Obsolete synonym of IFFLAG.

	BICLEAR {entname|varname*}, flagname

BIC {entname|varname*}, flagname

	Obsolete synonym of UNFLAG.

	LABEL procname

	Synonymous with PROC.

	NAME entname, qualifier

	Synonym of SAY, except that the qualifier is mandatory.

	DEFINE placename

	Add the placename to player's vocabulary. The recommended way of doing
this is by prefixing the placename with the + sign in its declaration

	EOI

	Closes an iteration loop. Use FIN instead!

	EOF

	Used in Platt's code as a short-hand for an arbitrary number
of successive FINs.

	DBNAME database-name

	Defines the name of the data file.

	TITLE title

	Older synonym of DBNAME.

	KEYWORD word [...]

	 If all indicated words (or their synonyms) appear in input, execute the
following code, up to the next major directive; otherwise PROCEED.

	HAVE {objname|varname*} [...]

	 If all indicated objects are held by player (at location INHAND), execute
the following statements up to the next major directive; otherwise PROCEED.

	HERE {objname|varname*} [...]

	 If all indicated objects are at the same location as the player
(specified by the variable HERE), execute the following code, up to the next
major directive; otherwise PROCEED. There was no corresponding opcode in the
original A-code.

	NEAR {objname|varname*} [...]

	 If all indicated objects are either held by the player (at location
INHAND) or at the same location as the player (as specified by the variable
HERE), execute the following code up to the next major directive; otherwise
PROCEED.

	AT {placename|varname*} [...]

	 If the player is at (any of) the indicated location(s), execute the
following code, up to the next major directive; otherwise PROCEED. Don't worry
about the name of this opcode clashing with the AT major directive – they
exist in different name spaces, major directives being recognised by starting
in column one. Note that the "place" may be an object!

	ANYOF word [...]

	 If the player typed any of the indicated words in the command being
processed, execute the following code, up to the next major directive;
otherwise PROCEED. If successive lines have the ANYOF opcode, they are merged
internally into a single ANYOF directive. If any of indicated words are in
command do following; else PROCEED

	VALUE entname* [{entname|constant}]

	Like SAY, but replace '#' with value of the qualifier, rather than the
qualifying entity name.

	SVAR {varname|constant}, varname

	Set value of the variable nominated in the second argument, according to
the value of an environmental variable (or condition) indicated by the value
of the first argument. Supported only for the sake of Platt's original
code of Adv550, which uses SVAR 4 and SVAR 5 to regulate timing of
game restores.

A-code history

The A-code language was created by Dave Platt in early 1980s for the
purpose of writing his classic 550 expansion of the original Adventure. It was
subsequently expanded by myself in mid 1980s when merging Platt's Adventure 3
(now known as Adv550) with Luckett's and Pike's AdventureII (now known as
Adv440) into Adv660 (well... into Adventure4, upgraded to Adventure4+, now
known as Adv660).

I embarked on further expanding Adv660 into Adv770 in 1998, one of the
purposes of the exercise being to explore further possibilities for improving
A-code. The final result was the considerably improved Acode12. The history section describes the history of the
language in greater detail.

A-code upward compatibility of saved games

 A-code makes it fairly simple to preserve upward compatibility of saved
 games – a feature I found indispensable in alpha and beta testing, and
 generally useful after that.

 You can just stick to following the five rules outlined below, and ignore
 ignore all accompanying explanations, but it may be useful to have some idea
 as to why those rules need to be followed. For that you need to have some
 grasp of A-code's internal concept of refnos (short for reference
 numbers).

 Refnos were briefly explained in the
 main description of the A-code language, so just briefly...

 A refno (or in full a reference number) is a number uniquely assigned by
 A-code to value-bearing declared entities – i.e. to objects,
 locations, variables and texts. The important point is that these refnos are
 allocated sequentially within each of these four categories in the order of
 entity declarations. Thus in a game source which mixes randomly object,
 place, variable and text declarations, objects will be numbered
 consecutively in their order of declaration, followed by places in their
 order of declaration etc.

 It is by preserving associations of refnos to game entities within
 these categories that saved games are kept upwardly compatible. So let's
 consider what specifically would or would not break such compatibility. For
 simplicity, I'll stick with talking about objects, but exactly the same
 points apply within other categories that can have non-constant values
 associated with them - places, variables or texts.

 If a previously declared object is removed in a later version of game's
 code, then all objects declared after the removed one will have their refnos
 reduced by one. If there are such objects, compatibility breaks. If there
 aren't (i.e. if the last declared object was removed, it does not break.

 Similarly, if an object is added, then refnos of all objects declared later
 in the game's code will be increased by one. If there are such objects,
 compatibility breaks. If there aren't (i.e. if the added object is the last
 object declaration, it does not break. So...

Rule 1: do not add objects (places, variables or texts) except at the
 end of all object (place, variable or text) declarations.

 What about removing objects. As should be obvious from the above, that's a
 bad idea. While it may seem that removing object(s) from the end of object
 declarations, the internal mechanics of the A-code kernel preclude this too.
 Thus...

Rule 2: The overall number of objects (places, variables or texts) may
 increase (as per rule 1), but decreasing it will break compatibility.

If you do find that an object is no longer required, don't remove it. Just
leave it there, possibly giving it a different name, e.g. SPARE.OBJ.1 or
something equally obvious. Better still, make its new name start with a dot:
.SPARE.OBJ.1 -- this will stop the acdc translator complaining about an
object being declared but not used. If later on you do want to re-use that
spare slot for some other object, you can do so, but you cannot assume its
value to be zero after a game is reloaded – that game may have been
saved before you removed the original object.

 As explained in the language description
 section, in addition to an integer value all objects, places and
 variables carry a bit-screen of flags. Flags have to be declared as symbolic
 names, but as far as the A-code kernel is concerned, such names are just
 synonyms for integer (non-negative) bit-screen offsets. Just as for refno
 association with entities, the association of these values with flag
 symbolic names must be preserved if saved games are upwardly compatible.

 Therefore Rules 1 and 2, stated above, apply to flag declarations too
 (separately for object, location and variable flag sets), but there is an
 additional constraint, which can be stated as

 Rule 3: do not change bit-screen byte-sizes!

 Simple version: declare up front a few spare flags in each of the three
 categories – object, location and variable. To avoid acdc
 complaining about the extra flags not being used, give them names starting
 with a dot (e.g. .SPARE.OBJ.FLAG.1 etc) or wiith "spare.." (e.g. SPARE..O1).

 Complex version: you may have some spare flags in each flag set, even if you
 did not declare any spare ones. This needs unpacking and to do so, I need to
 explain a bit about internal data structures involved.

 While A-code only permits a single flags declaration for both of objects and
 places, multiple flag sets of various sizes can be declared for variables.
 It may seem puzzling that bit-screens carried by variables are not somehow
 associated with particular variables (except possibly via code comments).
 The simple explanation is that there is in fact just one bit-screen for
 variables too. All the separate declarations of it merely define different
 synonyms for the same bit offsets. Thus e.g.

FLAGS VARIABLE
 FLAG1
 FLAG2
FLAGS VARIABLE
 FLAG3
 FLAG4
 FLAG5

 define one bit-screen of three bits, where FLAG1 and FLAG3 are both synonyms
 for 0, FLAG2 and FLAG4 are both synonyms for 1, and FLAG5 is a synonym for
 2.

 To make things more complicated, for historical reasons, location and object
 bit-screens automatically reserve the first three bits for kernel's use.
 Thus

FLAGS OBJECT
 OFLAG1
 OFLAG2

 declares a bit-screen of five bits, with OFLAG1 as a symbolic name
 for 3 and OFLAG2 as a symbolic name for 4.

 And as a final complication, bit-screens are actually allocated in 8-bit
 bytes. Hence in the above examples, the object bit-screen will have three
 spare flags (offsets 5, 6 and 7), while the variable bit-screen will have 5
 spare (offsets 3, 4, 5, 6 and 7).

 We are now ready to calculate "bit-screen byte-sizes" that have to
 be preserved. If the longest variable bit-screen declared by game's code has
 N flags, the size of the bit-screen is the smallest number of 8-bit bytes
 containing at least N bits. For both place and object bit-screens it is the
 smallest number of bytes containing at least N + 3 bits.

 Thus, for example, if you have 17 distinct (non-synonymous) object flags,
 the number of bits actually uses is 20, leaving you with four spare flags.
 Of course, there is nothing to stop you declaring explicitly some spare
 flags (with names prefixed with a . to keep acdc happy) for potential
 future use.

 Rules 1 and 2 above have dealt with declared texts, but an additional,
 related consideration applies to in-line texts.

 Rule 4: do not use text morphing features in in-line texts.

 By this I mean texts which have an internal dynamic: incrementing, cycling
 or randomised – in the case of in-line texts signalled respectively by
 'i:', 'c:' and 'r:' at the beginning of the text. The 'f:' prefix,
 signalling that the in-line text is a fragment, is benign.

 The reason for this restriction is simple: by their very nature, the order
 of declaration of inline texts is what it is. While the acdc
 translator can group them all safely at the end of text refnos, it can do
 nothing about their ordering. Therefore adding an in-line text necessarily
 increments refnos of all succeeding in-line texts. If such texts have no
 internal dynamic, this is not a problem, since being nameless, they cannot
 be referenced from elsewhere in the code.

 And that's really it. In practice, while working on and testing Adv770 I
 found that preserving upward compatibility between game versions was not
 hard. If the kernel ever changes in a way which would enforce upward
 compatibility break, this will be signalled by a change in its major version
 number.

A-code command parsing

While all command examples in this document are given in the upper case for
ease of visual identification, A-code parser is case-insensitive: all commands
are automatically forced into lower case.

	Where and when parsing takes place

	The QUERY directive

	The INPUT directive

	Core parser operation

	Simple commands

	Compound commands

	Identifying vocabulary words

	Treating blanks as command separators

	Inverting verb/noun order

	Additional parsing features enabled by game code

	Repeating commands

	Non-vocabulary "nouns"

	Handling IT

	Optional parsing features, available to game code

	Orphan processing

	Handling collective nouns

	Using EXCEPT with collective nouns

Where and when parsing takes place

There is no separate A-code directive for player command parsing. Parsing
takes place as an integral part of acquiring player input. There are two
separate minor directives which do so: INPUT and QUERY. It is INPUT that does
the heavy lifting. The much simpler QUERY directive is there merely as a
convenience for asking yes/no questions. For reasons explained elsewhere it has to be avoided in
A-code games, which are expected to be built in single-turn or library modes.

The QUERY directive

The QUERY directive is in fact one of the set of A-code conditionals. It
takes as its single argument a text, which gets displayed as a prompt and
expects yes or no in response. For example:

QUERY "Do you really mean it?"
 SAY "It shall be done, boss!" # Player said yes
ELSE
 SAY "Oh, OK. You had me worried there for a moment." # Player said no
FIN

Parsing is extremely primitive: any response starting with 'n' (or 'N') is
taken to mean "no", and any response starting with 'y' (or 'Y') is
taken to mean "yes". A null response is interpreted as
"yes". Any other response is rejected with "Eh? Do me a
favour and answer yes or no! Which will it be?" (this text is at
present hard-wired into the kernel). If the player still responds with
something that cannot be interpreted as yes or no, the parser says
"(OK, smartass... I'll assume you mean YES - so there!)"
(also hard-wired) and returns true.

The INPUT directive

The INPUT directive is the one that acquires and parses player commands. It
takes as its optional argument a text (or a variable pointing to a text),
which is to be used as a prompt, instead of the default question mark followed
by a space. The rest of this document is devoted to parsing done by INPUT.

While the basic form of a player command has the simple "<verb>
<noun>" format, the parser can handle compound
commands, reducible to a series of simple command in the basic format.
When a compound command is given, successive executions of the INPUT directive
process the implied simple commands, one at a time.

The result of parsing a simple command is delivered in three variables:
ARG1, ARG2 and STATUS. ARG1 and ARG2 contain respectively refnos of the verb
and the noun of the simple command parsed. The STATUS variable is set to the
number of words in the command: one or two, or to the automatically defined
constant BADSYNTAX a syntax error has been identified. For more detail see
below, in the section on identifying vocabulary words.

Core parser operation

Conceptually, A-code command parsing has three separate components:

	Parsing that is performed by the INPUT directive regardless of the
game code,

	Additional parsing features which are enabled by some particular
entities being declared in the game code, and

	Optional parsing features made available by the kernel to A-code games.

This section deals with core parsing features, which are not influenced
by the game code.

Simple commands

A command consists of one or more words (a.k.a. tokens), delimited by
blanks (spaces) and/or commas (,) and/or dots (.) and/or semicolons (;). All
leading and trailing blanks are ignored and multiple blanks are treated as a
single blank.

A simple player command has the verb or verb/noun structure. E.g.

GET LAMP

Compound commands

Compound commands can be constructed by joining simple commands by command
delimiters. The parser recognises three such delimits, which are
completely synonymous: a semicolon (;), a dot (.) or ' then ' (note
that unlike the colon or the dot, the ' then ' delimiter must be
surrounded by blanks, to make it into a separate token.

Compound command may also feature object iteration: a verb followed by a
list of nouns, separated by commas (,) or ' and '. Again, the
surrounding blanks are mandatory for the latter form.

Thus for example,

GET LAMP AND KEYS THEN READ POSTER

is equivalent to

GET LAMP, KEYS. READ POSTER

and is parsed as meaning

GET LAMP
GET KEYS
READ POSTER

In order to be maximally forgiving, the parser will also understand
some incorrect but unambiguous variants on this syntax. E.g. in
' and then ' (equivalent to ',.') the iteration delimiter
is ignored. So

GET LAMP AND KEYS AND THEN READ POSTER

will have the obviously intended effect.

 The special English words AND and THEN are default equivalents of a comma
 and a semicolon respectively, but they can be replaced by others by a game's
 code. See the A-code internationalisation
 section.

Identifying command words

 Individual command tokens are matched against the game's vocabulary. At
 game's discretion, the matching process may be

	
 restricted to exact matches, or

	
 permit minimal (automatically derived) abbreviations, or

	
 permit single typo correction – see the vocabulary description for more details.

 See the A-code vocabulary description
 for details of command words matching against game's vocabulary.

 If a command word is not found in the game's vocabulary and the ENTNAME
 variable is defined, the list of entity names is also searched, looking for
 an exact match.

 If a simple command is parsed successfully, values of ARG1 and ARG2 are set
 to the refno values corresponding to the first and the second command token
 respectively. However, a further enhancement, if ARG1 value turns out to be
 in the range of object or location refnos, and ARG2 in the range of verb
 refnos, the two command words are swapped around. Thus, for example BIRD GET
 gets parsed as GET BIRD.

 An additional parsing feature is present for games of style 11 or higher. If
 no match is found for the second command word, the kernel still does not
 give up. It is possible that the player was trying to reference something
 mentioned in an object or place description, or in some response recently
 given to an earlier command. Every time some text is output, all of its
 words longer than 3 characters and not ending in "ing", are stored in a
 separate, temporary vocabulary. This vocabulary, which is re-initialised
 whenever the player changes location, is scanned for an exact match (no
 abbreviations or typos). If a match is found, this is still treated as a
 matching failure, but of a different kind, so that if desired, it can be
 treated differently by A-code source.

 If the parser fails to match a vocabulary word, the corresponding ARG1 or
 ARG2 variable is set to one of special pre-defined values:

	
 BADWORD – no match of any kind.

	
 AMBIGWORD – abbreviation matching gives a non-unique result –
 more than one vocabulary word could be meant.

	
 AMBIGTYPO – single typo matching gives a non-unique result.

	
 SCENEWORD – the match is not against the vocabulary by against the
 list of words used by the guide since the last change of location.

	
 BADSYNTAX – any other parsing failure. (Note that in this case
 the STATUS variable is also set to BADSYNTAX.)

Finally if a command consists of just a single word (the STATUS variable
is set to 1), the ARG2 variable is set to the predefined constant NOWORD.

Treating blanks as list or command separators

 The verb SAY is treated by the parser as a special case in that spaces can
 be used instead of commas as in SAY FEE FIE FOE, which is treated as SAY
 FEE, FIE, FOE (which is equivalent to SAY FEE; SAY FIE; SAY FOE).

Inverting verb/noun order

 By default, in two word commands, the first command token is considered to
 be the verb and the second one as the noun, e.g. TAKE BOTTLE. However, if
 the first token is not likely to be a verb (being e.g. a place or an object)
 and the the second is identifiably a verb, the parser will automatically
 swap them around, making BOTTLE TAKE also a legitimate command.

Additional parsing features enabled by game code

 Some functionality of the A-code kernel is only present if game source
 defines particular entities.

Repeating commands

 If game source declares the word AGAIN (possibly with some synonyms),
 commands can be repeated by using AGAIN as a verb. If used within a compound
 command it will repeat the last sub-command delimited by THEN (or a dot or a
 semicolon). If used on its own, it will repeat the whole of the player's
 last input, which may be a compound command (and may itself contain AGAIN on
 order to repeat its sub-command).

 The special English word AGAIN is merely the default "repeater"
 word.

So, for example:

GET BUCKET.DRINK BUCKET. AGAIN

is equivalent to

GET BUCKET
DRINK BUCKET
DRINK BUCKET

whereas

THROW AXE THEN GET AXE
AGAIN

is equivalent to

THROW AXE THEN GET AXE
THROW AXE THEN GET AXE

Non-vocabulary "nouns"

Sometimes it is not desirable to match player input against the games
vocabulary at all. Saving and restoring games is an obvious example of this
– players cannot be restricted to game's vocabulary for naming saved
games. One could, of course, insist that SAVE and RESTORE do not take a save
name as the second word of the command, but invoke instead a separate input
routine, which takes the desired save name without any reference to the
vocabulary. However, the same applies to any command which takes a numerical
argument, e.g. specifying screen width or height in the console mode.

Rather than having special code for handling such (and similar) exceptions,
A-code's approach is to tag relevant verbs as "special". In the
absence of flag settings for vocabulary words (possibly to be rectified in the
future), the solution is to groups declaration of such verbs between
declarations of two pseudo-verbs: first.special and last.special. This works
because (a) A-code allocates refnos (in a given entity category) in the order
of declarations and (b) if prefixed with '-' these pseudo-verbs are
themselves allocated refno, but are not added to the game's vocabulary. Here's
an example based on Adv770:

The next block are specials, not requiring validation of ARG2.
#
verb -first.special # Mark the first one
verb again, repeat, =r
verb save, suspend, pause
verb restore, load
verb rest, wait # In case players type REST MYGAME
verb !length, =!line, =!width
verb !scroll, =!screen, =!depth
verb !margin, =!offset
verb restart, initialise
verb why
verb please
verb -last.special # Mark end of special verbs
#
End of verbs not requiring validation of ARG2.

The kernel is aware of the special significance of first.special and
last.special and will automatically suppress validation of the second
command word when parsing a command with any verbs defined as special in this
manner. However, a similar mechanism can be profitably used by A-code source.
Here's another example from Adv770:

verb -first.direction
verb north, =n
verb northeast, =ne
verb east, =e
verb southeast, =se
verb south, =s
verb southwest, =sw
verb west, =w
verb northwest, =nw
verb -last.compass.point
verb up, =u, upward, ascend
verb down, =d, downwards, descend
verb -last.direction

This makes it easy to check for a command word being a direction

IFINRANGE ARG2, FIRST.DIRECTION, LAST.DIRECTION

or a compass point:

IFINRANGE ARG2, FIRST.DIRECTION, LAST.COMPASS.POINT

Handling IT

Handling the indexical noun IT is fairly straightforward in A-code. One
declares a dummy object of that name (with whatever synonyms may be deemed
appropriate) and sets its value to be a pointer to an appropriate object.
The value of IT should be set to a pointer to an object in the following
situations:

	A player command explicitly names an object.

	Player's inventory gets listed and the list consists of a single
object.

	Objects in the current location get listed and the list consists of a
single object.

OTOH the value of IT should be probably cleared (set to zero) if either of
the two kind of object list contain more than one item.

If a player's command contains the word IT and the IT object has a non-zero
value FAKECOM can be used to set ARG1 or ARG2 (as appropriate) to pretend that
the command explicitly named the object pointed at by IT.

None of the above involves any special kernel functionality, so why is the
matter even mentioned in this description of command parsing by the kernel?
The reason is that there is one other situation which requires the value of IT
to be modified, and that situation is handled by the kernel.

If IT is declared as an object and the game source successfully uses the
DEFAULT directive to select a default object, then IT is automatically set
by the kernel to point at the object defaulted to.

Optional parsing features available to game code

Other features of the A-code kernel, which are also dependent on some
entities being or not being defined in game source, do not take effect
automatically, but have to be explicitly triggered by game code as and
when appropriate.

Orphan processing

If a player issues a single word command, which can be assumed to imply a
a target object on an action (e.g. PUSH on its own, or KEYS ditto), the game
can do better than just complain that not enough information has been given.
If the A-code source declares PLS.CLARIFY as a flag, setting this flag on the
automatic variable STATUS affect the way the next command gets parsed.

If the next command also consists of a single word, the "orphan
processing" mechanism comes into play. It combines this command with the
preceding one-word one, so that the player does not have to repeat the
previously typed word. On the other hand, if the next command consists of two
words, it is parsed in the usual manner and the clarification request is
ignored. The PLS.CLARIFY flag gets automatically unset in either case, so
that it does not have to unset explicitly by the game's code.

 Here's an example of orphan processing in action:

? get
What do you want me to get?
? rod
You get the rod.
? rod
What do you want me to do with the rod?
? drop
You drop the rod.
?

The underlying code dealing with generic GET requests could look like
this:

action get
 ifeq status, 1
 default portable # Find default object flagged as portable
 ifeq arg2, ambigword # If more than one possible target
 flag status, pls.clarify # Activate orphan processing
 quip "What do you want me to {arg1}?"
 fin
......

The code for handling the drop command in the above example would have to
come into play, once the game fails to find an action associated with the word
ROD.

 call arg1 # If arg1 has an associated action, execute it
 ifflag arg1, object # We fell through, so presumably no such action
 flag status, pls.clarify # Activate orphan processing
 quip "What do you want me to do with the {arg1}?"
 fin

Handling collective nouns

The A-code language makes it easy for a game to permit use of collective
nouns such as, for example, ALL or TREASURE. This is done by using the A-code
directive DOALL before handling the verb to be applied to a collective noun.
Here, for example is a very simple code to handle GET ALL:

action get
#
Check for the command being GET ALL.
#
 ifkey all
 doall here, portable # Sets up the "do all" loop
 fin
#
The rest is ordinary handling of GET
#
 ifeq status, 2 # Do we know what to get?
 and
 ifhere arg2 # Is the the object in the same place as the player?
 and
 ifflag arg2, portable # Is the object portable?
 apport arg2, inhand # If so, relocate the object to player's possessions
 quip "You {arg1} the {arg2} # Report the action.
 fin
fin

The DOALL directive in the above example sets up the do all loop of
command processing, with the effect of setting ARG2 to the first object
matching the specified criteria (being both co-located with the player and
flagged as portable), and sets the value of STATUS to 2. The effect of this is
that the rest of ACTION GET code results in that object being picked up
and the REPEAT code loop restarted (due to the use of QUIP instead of SAY
when reporting the action).

Because of the do loop being active, instead of prompting the player for the
next command, the kernel constructs that command by taking the same verb (GET
in our case) and combining it with the next matching object, if any.
That command is again processed in the normal way. This continues until such
time as there are no matching objects left, at which point the do all loop
is terminated and the player prompted for a command.

This is obviously a very simplistic implementation and various checks may
be necessary, such as e.g. checking that the player has a spare carrying
capacity for the next object to be picked up. Such checks cab be performed as
appropriate using the IFDOALL directive, which executes its associated block
of code if the do all loop is active. If needs be, the loop can be aborted by
the FLUSH directive.

TREASURE could be handled in a similar manner, assuming that in addition to
being flagged as being portable (via the game-defined flag PORTABLE in the
above example), it is also flagged as valuable by some other game defined
flag.

Using EXCEPT with collective nouns

As a further enhancement of handling collective nouns, if EXCEPT is
declared as a vocabulary word, the parser accepts an extension of the simple
verb/noun command structure. Where a collective noun (e.g. ALL) is allowable
as a command noun, it can be followed by EXCEPT (or a synonym thereof) and a
list of entities to be exempt from the requested action. For example:

DROP ALL EXCEPT LAMP AND KEYS THEN READ POSTER

will be understood in a natural manner.

This expanded syntax has to, of course, cater for the possibility of
unrecognised words being given by the player in the
list of exceptions. To do so, this syntax enhancement brings into existence
the automatic variable ARG3. If a word in the exception list is not recognised,
the do-all loop is aborted and ARG3 is set to an appropriate error code, and
its associated word is the unrecognised word of the player's command. Here is
an example of this kind of error handling in Adv770:

 ifkey all
 call shadow.shutup
 ifeq arg3, badsyntax
 quip no.except, arg3
 fin
 ifeq arg3, ambigword
 quip tell.me.more, arg3
 fin
 ifeq arg3, badword
 flush
 quip nocomprende.object, arg3
 fin
 ifeq arg3, ambigtypo
 quip is.it.a.typo? arg3
 fin

A-code internationalisation

 As of version 12.83, A-code is sufficiently UTF8 compliant to handle games
 with messages, vocabulary and entity names in languages other than English,
 including ones which use non-ASCII characters, provided (a) words are
 separated by ASCII blanks (octal 32) and (b) are parsed left to right. All
 you need is a UTF8-compliant text editor. While this degree of
 UTF8-compliance is only possible since A-code version 12.83, it is available
 in games using A-code styles from 10 upwards.

 UTF8 compliance means that you can have texts and player vocabulary,
 including object/place names in any character set that can be represented in
 UTF8 encoding of Unicode. To activate this feature of the current A-code
 engine, add the UTF8 major directive to the game source header.

 Of course, full game internationalisation has other challenges, which are
 nothing to do with character encoding.

 		Parsing of complex commands

 	
 Some words, such a AND, THEN, AGAIN... have special meaning for the
 kernel. Different words will apply in different languages.

 		Modifying kernel messages

 	
 While A-code leaves most of communication with the player to the game's
 code, there are a few occasions when the kernel responds directy -- e.g.
 about being unable to save a game. These kernel messages also need
 changing for languages other than English.

 		Echoing player's words grammatically

 	
 When the game incorporates player command words into its responses, in
 English just echoing player's words is sufficient. Other languages
 typically need to be able to modify echoed words accoding to their
 grammar rules.

Parsing complex commands

 A-code kernel has to be able to identify words being used to
 structure complex command: AND being used instead of a comma, and THEN being
 used instead of a semicolon. Furthermore, if the verb AGAIN is defined by
 the game, it is intercepted by the kernel and taken to men a request to
 repeat the previous command (see the section on automatic entities and
 flags in the A-code language documentation). There are a few other
 special words that have to be known to the kernel. The current complete list
 is as follows:

	
 AND – parsed by the kernel as equivalent to a comma (see the
 explanation of compound player
 commands).

	
 THEN – treated as equivalent to a semicolon (see the
 explanation of compound player
 commands).

	
 AGAIN – its presence in player vocabulary activates the
 repeater feature of command parsing (see the relevant part of the section on command
 parsing).

	
 ALL – its presence in player vocabulary activates the
 availability of the A-code minor directive DOALL (see the
 the relevant part of the
 section on command parsing.)

	
 EXCEPT – used to signal exceptions to an DOALL command
 processing (see the the relevant
 part of the section on command parsing.)

	
 IT – maintained by the kernel as a pointer to the last
 referenced objects (see the the
 relevant part of the section on command parsing.)

	
 YES and NO – have to be understood by the kernel
 for processing of the QUERY directive, which expects a yes/no answer.

	
 UNDO – its presence in player vocabulary activates the
 system for undoing/re-doing player commands (see the the explanation of the undo mechanism.)
 Note that it is not necessary to translate the REDO command.

	
 SAY – use in kernel is experimental, will be fully
 described in a later A-code version.

 The obvious solution in writing a game in a language other than English is
 to declare the appropriate synonyms for such special words. (AND and THEN
 are defined automatically, but can be also defined explicitly as vocabulary
 words.) E.g. in Czech the equivalent of AND is A, and of THEN is PAK (or
 POTOM). Thus

WORD AND, A
WORD THEN, PAK, POTOM

enables these words to be used in place of AND and THEN.

 There is, of course, an obvious snag to this simple solution. It leaves the
 English version of such special words in the player vocabulary, which may be
 very confusing to players (e.g. because of the typo correction mechanism).
 Or worse, those words might mean something else in some other language. To
 avoid such problems, one can specify exclusion of English versions from the
 player dictionary in the standard manner:

WORD -AND, A
WORD -THEN, PAK, POTOM

 A bit of magic happens when any synonyms are given to the excluded word,
 allowing that word to be defined in its own right and having another meaning
 altogether. Thus it would be perfectly legal to add e.g. WORD THEN to the
 above example. Any code references to THEN would then be referring to that
 addition definition. This avoids any potential case of a clash between a
 reserved English vocabulary word and some word in another language.

 If no synonyms are given, the excluded word can still be used by game code,
 if required.

Modifying kernel messages

 The acdc translator defines a number of default messages for kernel's
 use. Those which can occur during normal play, can be redefined simply by
 declaring a text message of the appropeiate name. Below is the list of all
 such redefinable messages with their default definitions and a brief
 explanation of the circumstances in which the message is used by the kernel.
 None of these messages need to be defined in the game's code. An explicit
 definition is only required if a non-default text is desired.

	Shown if the game executes the DUMP directive:

	TEXT .K.DATA.DUMPED
 Game data dumped into the log file.

	This playful instruction is shown only in the Windows console build.
It exists in order to prevent game window closing before the player
can read game's final message.

	TEXT .K.EXIT.ENTER
 (To exit, press ENTER)

	This message is displayed when an interrupted game is being resumed.
Unlike other messages, it is not written into the log if the game is being
logged.

	TEXT .K.IN.PROGRESS
 Restoring game in progress...

	This error report occurs if an interrupted game is to be resumed
but the corresponding game dump cannot be fuond, read or parsed. Which
should never happen, of course.

	TEXT .K.LOST.SESSION
 Oops! We seem to have lost your current game session! Sorry about that!

	The next 5 messages are to do with game being saved by the player.

	TEXT .K.NAME.TO.SAVE
 Name to save game under:_
TEXT .K.DUMP.EXISTS
 There's already a game dumped under that name.
TEXT .K.REALLY.OVERWRITE
 Do you really mean to overwrite it?_
TEXT .K.AS.YOU.WISH
 As you wish...
TEXT .K.CHANGED.MIND
 Changed your mind, eh? Fine by me...

	
 The following messages occur in only in the library mode, when the
 controllong routine makes the advturn("_LIST_") call. The first prefixes the
 list of saved games about to be displayed by the kernel.

	TEXT .K.NAME.TO.RESTORE
 Name of saved game to restore:_
TEXT .K.GAME.LIST
 You have the following saved games:_
TEXT .K.NO.SAVED.GAMES
 You have no saved games to restore.

	If the QUERY directive is used to prompt for a yes/no answer and the
player responds with something other than yes or no, these two messages
get used.

	TEXT .K.YES.NO
 Eh? Do me a favour and answer yes or no!Which will it be?_
TEXT .K.ASSUME.YES
 (OK, smartass... I'll assume you mean YES - so there!)

	

	FRAGMENT .K.PRE.SAY
 Ok - "
TEXT .K.POST.SAY
 "

	

	TEXT .K.OK
 OK.

	

	TEXT .K.MORE
 [More?]_

Echoing player words grammatically

 Echoing player words in Engish is easy enough. For example, if the player
 says TAKE CLOAK, responding with "You take the cloak" is fine, but in other
 langauges, player's CLOAK may have to be transformed from the nominative
 case to the genitive one. End even in English one may wish to reply with a
 plural (e.g. "There are no cloaks to be seen here") or transform an
 irregular verb into the past tense.

 The current version of A-code does not as yet offer a way to do this, but I
 have a cunning plan :-) for a simple extension of the language which would
 do so. Watch this space!

 In the meantime you'll have to stucture game's responses to avoid the need
 for grammatical transformations.

A-code undo/redo facility

If the game defines UNDO as a verb, then the undo/redo A-code mechanism gets
activated for that game. The REDO verb is then defined automatically, though
it can be also defined by the game explicitly as a verb. In such
circumstances, defining REDO as anything other than a verb is treated as an
error. REDO can be used immediately after an UNDO command, to undo some or all
of the UNDO.

The general form of UNDO and REDO commands is as follows:

verb UNDO [{<number>|ALL|UNDO}]

verb REDO [{<number>|ALL}]

The default number of turns to undo or redo is one, though a specific
number can be specified. ALL means just that – undo all collected turn
history or undo all of the preceding UNDO. "UNDO UNDO" is equivalent
to REDO ALL.

Information on the effects of an UNDO/REDO command is returned by an
automatic variable UNDO.STATUS, which may but need not be explicitly defined
by the game's code. The variable is considered to have four automatically
declared flags:

	UNDO.INFO

	This flag is defined but not used by the kernel. It may be used by the
game's code e.g. to enable or disable use of UNDO and REDO commands.

	
UNDO.TRIM

	Set if requested number of turns has been trimmed. The value of
UNDO.STATUS is set to the actual number of turns undone or redone.

	
UNDO.INV

	Set if inventory contents changed, so that the game can note the fact.
There is no equivalent flag for change of location, because that can be
checked by the game's code by preserving the HERE value in a local variable
and then it with the value of HERE after the UNDO/REDO.

	
UNDO.BAD

	Set if the UNDO/REDO is given an illegal argument.

Undo history is saved and restored as a part of game saving and restoring.
However, should the game's number of objects, locations or global variables
change, the undo history of games saved by an earlier version will be quietly
ignored.

Here is a simple example of using UNDO:

action undo
 local uhere
 set uhere, here # Preserve value of HERE in a local variable
 undo arg2 # Do the UNDO!
 ifgt undo.status, 0 # Something got undone
 ifflag undo.status, undo.trim
 say "Cannot undo that many turns!"
 fin
 say "Turns undone: $n.", undo.status
 ifne here, uhere
 say "You have relocated!"
 fin
 ifflag undo.status, undo.inv
 say "Your possessions have changed!"
 fin
 quit
 else # Nothing undone
 quip "Nothing happens."
 fin

A-code vocabulary

A-code vocabulary structure and handling have some unusual features,
motivated by my desire to make IF games more player-friendly and less
'mechanical' in their responses to player commands. This document deals
specifically with vocabulary handling, rather than with the more general topic
of player command parsing. See the parser
section for parsing details.

There are four specific areas in which A-code vocabulary handling is unusual. These are:

	Automatic abbreviations

	Approximate matching (a.k.a.
 typo correction)

	Synonyms and sub-synonyms (a.k.a.
 the 3D vocabulary structure)

	Vocabulary listing

Automatic abbreviations

By default, all vocabulary words are automatically abbreviated to the
shortest unambiguous length. For example, if the vocabulary contains
KICK and no other word beginning with K, then KICK is automatically
abbreviable as any of K, KI and KIC. If, however, the vocabulary also
contains KILL (and no other word beginning with KI), then KICK is only
abbreviable to KIC, and KILL to KIL.

There are, of course, command words which must not be abbreviated:
this is particularly true for any magic words. E.g. we do not want X
to mean XYZZY! This is catered for in vocabulary declarations by
prefixing the non-abbreviable word with an exclamation mark:

verb !xyzzy

This does not, however, eliminate all unwanted abbreviations. For
example, a player may wish to save a game under some arbitrary name,
which just happens to be a legitimate abbreviation of some vocabulary
word. Clearly, the intended name should not be expanded to the
vocabulary word in question.

This problem is solved by permitting some vocabulary verbs to be
marked as "special" in that other words in the command are
taken verbatim, as entered by the player (except for the case, which is
always normalised to lower case). For historical reasons, instead of
such special verbs being flagged individually, at present (A-code
version 12) they are grouped in one block of verb declarations:

verb -first.special

[standard declarations of any special verbs]

verb -last.special

The '-' sign preceding "first.special" and
"last.special" indicate that these are pseudo-verbs, not to be
added to the game's vocabulary. This is an extension of the same
convention in declaring object names.

To cater for any other instances in which abbreviation expansion is
not wanted, setting the mandatory STATUS variable to the built-in value
of NO.MATCH suppresses expansion for the duration of one command
cycle.

As a further wrinkle, for object names, abbreviation matching is performed
only if the object in question is either carried by the player or is in the
same location as the player. This prevents game secrets being inadvertently
revealed by being too generous in interpreting player's command.

See the section on command
parsing for an explanation of A-code's response to ambiguous
abbreviations.

Approximate matching

My typing is terrible. From seeing many player logs I know that I am
not alone in this. That's why by default A-code enables automatic
approximate matching of words entered by the player against words in the
game's vocabulary. This feature is activated by the game declaring a text
named TYPO, the assumed purpose of which is to report typo matching. This is
necessary because otherwise typo correction can look distinctly baffling
to players.

If a single typo is sufficient to transform an
unknown word type by the player into a unique, non-abbreviated
match in the vocabulary, that match is accepted as the
player's command word. Here by a typo I mean a single character dropped,
a single character interpolated, a single character substituted by
another character or two adjacent characters swapped around. Thus, for
example GET BOTTEL will be understood as GET BOTTLE.

Note, however, that approximate matching is attempted instead of, rather
than in addition to unique abbreviation matching, if no unique abbreviation is
found. Thus if BOTT is a unique abbreviation of BOTTLE, then GET BOTT will be
understood, but GET BORT will not. That's because BORT differs from BOTTLE by
three typos rather than one: mistyped R instead of T and two missing letters L
and E at the end.

Clearly enough, the same problems arise here as with abbreviation
matching. These are dealt with by the same mechanisms. No approximate
matching in the following circumstances:

	word declared as non-abbreviable

	word accompanies a verb declared as "special"

	word refers to an object not yet seen by the player

	the STATUS variable is set to NO.MATCH or NO.AMATCH (duration one
command cycle)

See the section on command
parsing for a detailed explanation of A-code's responses to
approximately matched commands.

Synonyms and sub-synonyms

Traditionally, IF game vocabulary is a 2D structure, consisting of
list of lists of synonyms. Thus, for example, using A-code notation

verb get, take

verb drop, release

declares two vocabulary terms, both of which are denoted by two
synonymous words. From version 10, A-code adds a third dimension: any
individual word in the traditional structure may be associated with a
list of sub-synonyms. For example, in Adv770 the full definitions of
get and drop are as follows:

verb get, =g, =reach, carry, take, =t, pickup, keep, hold, catch,
grab, =grip, clutch, steal, capture, tote, scoop

verb drop, =dr, =discard, =fall, =abandon, free, =release, =let

The '=' sign preceding a word indicates that word to be a sub-synonym
of the last preceding word not prefixed with '='. So G and REACH are
sub-synonyms of GET, but CARRY is not.

This additional vocabulary structure is motivated by my preference
for responding to player commands rather more explicitly than is
traditionally the case. Thus instead of the standard and rather
mechanical "Taken." in response to GET CAGE, I like the game
to respond with "You get the cage.". But there is a very
obvious snag to this: G CAG should not result in "You g the
cag."

While the expansion of "cag" to "cage" is handled
by the abbreviation processing feature of the parser, "g" is
declared explicitly as a vocabulary word, so does not get expanded as an
abbreviation. If there were no other verbs beginning with g, it would
not be necessary to include "g" as a verb synonym – the
abbreviation processor would do the expanding, but that's not a
realistic solution. Hence the declaration of "g" as a
sub-synonym of "get", which instructs the A-code engine to
echo the latter if the command verb is to be echoed.

Vocabulary listing

To my mind, one of the most irritating features of many IF games is the need
to guess what words may or may not be present in the game's vocabulary. A-code
offers an intelligent way of making the vocabulary listing available to
players, without revealing things players should not as yet know about. This
is achieved by the minor directive VOCAB, which is a kind-of fancy wrapper
around the SAY directive. The full syntax of the directive is as follows:

VOCAB {<OBJECT>|<PLACE>|<WORD>} [, {<PLACE>}] [,
{<FLAG>}] [, {<TEXT>}]

The first argument is the vocabulary word to be conditionally included in a
vocabulary listing. The optional second and the third arguments specify
conditions under which the word is to be included. The fourth argument, also
optional, specifies the text to be shown instead of the word given by the 1st
argument. Each vocabulary word shown to the player is prefixed with a comma
followed by a space. A special form of the directive

VOCAB [<TEXT>]

is used to signal the start of a sequence of VOCAB directives. It can
optionally display a text, but its main purpose is to suppress the
comma-and-space lead of the following vocabulary list.

As an example, here are some VOCAB commands from Adv770

 	vocab voc.lead

 	A special form, signalling the beginning of a vocabulary
 listing in order to suppress the leading comma before the first word
 to be shown; in this example a text name is given as an argument, so
 the voc.lead message will be also displayed.

 	vocab axe

 	The word axe is shown unconditionally.

 	vocab alarm, seen

 	The word alarm is shown if the
 seen bit of the alarm object is set.

 	vocab bones, bones.room, been.here

 	The word bones is shown if
 the player has been at the bones.room location.

 	vocab eggs, seen, eggs.voc

 	The text eggs.voc (in this case "eggs (nest)")
 is shown if the object eggs has been seen.

A-code texts explained

 A-code texts are de facto objects with their own methods, making them into a
 far more powerful and flexible game component than in any other IF system.
 Yet they can be treated also as simple text strings – the complexity
 of "text morphing" is there to be used, but it does not force
 itself onto game writers.

 This section explains A-code texts and their handling as of A-code version
 12.91.

General notes on style

	
 The use of upper/lower case in the examples is purely my programming
 convention; except within text definitions, A-code is case insensitive.

	
 The use of dots to separate words in A-code entity names is also
 conventional; any other convention could be used, e.g. using dashes or
 underscores instead of dots, or (not recommended!) uppercasing the first
 letter of each word.

	
 The use of commas as A-code statement parameter separators is purely
 optional, for increased readability; A-code counts commas to be white
 spaces.

	
 All examples use the up-to-date A-code notation (A-code 12), which differs
 in some respects from that in the original version of the language by Dave
 Platt.

A-code text basics

 This part of the section deals with the basics of A-code text declaration
 and use.

A-code text declarations

 As of version 12, in-line texts are also permitted (see the in-line-text section), but traditionally A-code defines all
 its texts (other than place and objects descriptions) as separate named
 entities. The basic A-code text declaration has the form

 TEXT <text_name>
 <some_lines_of_text>

 Like all major A-code directives, the keyword TEXT must be at the very
 beginning of a line. The text lines following it must all have at least one
 leading blank. The declaration is terminated by a line with a non-blank
 first character (i.e. another major directive or a comment), or by
 end-of-file.

While generally line breaks are ignored in the text definition (see
the next section for more details), any texts declared using the TEXT
directive are deemed to have a trailing end-of-line. A text fragment,
without the trailing EOL can be declared using the FRAGMENT variant of a
text declaration:

 FRAGMENT <text_name>
 <some_lines_of_text>

 Here is a simple, purely artificial example:

 FRAGMENT LINE.START
 This line is sp
 TEXT LINE.END
 lit into two parts.

 When displayed by the A-code primitive SAY

 say line.start
 say line.end

 The result is a single line "This line is split into two parts." followed by
 a line break.

Both TEXT and FRAGMENT directives can be used to declare
"anonymous" texts by omitting the text name. This practice goes back
to Dave Platt's original version and is now deprecated -- text switches can be
used instead. See Appendix C on handling anonymous
texts.

Basics of text definitions

 A-code text definitions (the lines of text following the TEXT or FRAGMENT
 declaration line), are processed as follows:

	
 Any leading or trailing spaces on an individual line are removed.

	
 Simple line breaks (i.e. single end-of-line characters) are replaced with a
 space, after the removal of trailing characters. (But see the below
 discussion of text switches for an exception to this
 rule.)

	
 Successive line breaks are reduced to two line breaks. I.e. successive blank
 lines are reduced to a single blank line

	
 If after the removal of leading spaces, a line starts with a forward slash,
 the slash is removed; the only purpose of this arrangement is to be able to
 force a line to start with some leading spaces after all, or to force
 multiple successive blank lines.

	
 The reverse slash character is used as a logical escape, to enable
 the display of characters with a special meaning (see Appendix B). The reverse slash itself can be escaped, of
 course, if it needs to be displayed as an ordinary character.

	
 All unescaped underscores are converted into spaces. This is another
 mechanism for forcing leading spaces in a line of text.

In-line texts

 In-line texts are accepted in all circumstances in which a reference to a
 named text is acceptable. The basic syntax is extremely simple. If a string
 beginning with a double quote is encountered where a text name would be
 appropriate, everything (line feeds included!) up to the next double quote
 is accepted as the desired text. E.g.

 say "This is a line of text, follwed by a blank line...

 followed by this line."

 The acdc translator in fact declares a standard A-code text, assigns
 an automatically generated name to it, and replaces the whole quoted string
 with that name. The upshot is that all text features described in
 this section apply to in-line texts as well.

 There is an additional syntax wrinkle to permit in-line texts to be text
 fragments and to permit them to have their own internal dynamics, as
 described in the dynamic implicit qualifiers section
 further in this section.

 If an in-line text starts with one of i, c, r or
 f, followed the colon character :, it gives the text a special
 property. If the character is f ("f:") then the text is
 deemed to be a fragment, without a trailing line feed. The other three
 possibilities declare the text dynamic method to be one of increment,
 cycle or random, as explained in the dynamic explicit
 qualifiers section below.

 Since fragment texts may also have their own dynamic methods, this
 additional syntax may be repeated as e.g. "f:c:" or
 "r:f:" etc.

Centered text

 A text definition line beginning with the plus character + is treated
 as a line to be separately centered on the display. The plus sign is
 stripped off, and the line is prefixed with a line break (unless it happened
 to be preceded with one) and a line break is appended to it. The result is
 displayed centered.

 A-code also understands "block centering". A centered block is a
 set of successive text definition lines, each of which is prefixed with the
 equals character =. The equals signs are stripped off, and the whole
 block is displayed offset to the right in such a way that its longest line
 appears centered on the display.

 As with individual line centering, the block is prefixed by a line break if
 one is required (i.e. there wasn't one already), and suffixed with a
 line-break. Ends of line within the centered block are also honoured,
 contrary to the more general A-code convention.

 Here is an artificial example showing both kinds of centering:

 TEXT CENTERING.EXAMPLE
 This text shows
 +a centered line
 +and another centered line,
 as well as
 =a whole block
 =of lines, all of which
 =are centered as a single unit.
 Which is sometimes useful.

 If displayed (e.g.) in console (i.e. a fixed size font) on an 60-character
 wide display by

 say centering.example

this would result in

 --
 | This text shows |
 | a centered line |
 | and another centered line, |
 | as well as |
 | a whole block |
 | of lines, all of which |
 | are centered as a single unit. |
Which is sometimes useful.

 Non-console mode (i.e. proportional font) displays achieve the same overall
 effect.

Text post-processing

 A-code texts are not displayed to the player immediately. They are
 accumulated instead in an internal, dynamically sized buffer. The contents
 of this buffer are post-processed and displayed by the kernel when either a
 command prompt is issue to the player, or the game is about to exit. This
 permits some A-code directives to affect previously output text.

 For example the resay directive, instead of appending its text to the
 output buffer, first empties the buffer so that its text completely replaces
 anything accumulated so far. On the other hand the append directive
 preserves the accumulated text, but strips from it any terminating blank
 lines, effectively appending its text to the last output paragraph.

 The A-code kernel processes the accumulated buffer before displaying its
 contents, e.g. by normalising any successive blank lines to a single blank
 line. (Multiple blank lines may be magicked up by using the non-breaking
 space character – see the list of special characters in Appendix B.

A-code text-morphing features

 This part of the section describes the "text-morphing" features
 of A-code texts.

Text switches defined

 A text switch is effectively an indexed array of strings embedded in a text
 message. More than one text switch can be embedded in a single text, and on
 the other hand, a whole text may consist of a single text switch.

 Formally, a text switch is a sequence of arbitrary text strings separated by
 forward slashes, with the whole sequence being enclosed in square brackets.
 E.g.

 [None/One/Two/Many]

 is an example of a simple text switch of four elements.

 The idea is that when the whole message is displayed to the player, just one
 element from every given switch is selected for display, according to some
 rule. The selection is made by using some "qualifier" value as the
 index of each text switch array encountered in the message. Text switch
 elements are indexed from zero upwards, so that in the above example the
 element None has the index value of zero, while the element
 Many has the index value of three.

 While ends of lines are treated in A-code text definitions as white spaces
 (just like, for example in HTML), an end of line immediately following a
 text switch separator character / is simply ignored, which
 conveniently allows text switches to be spread across several lines. E.g.
 the above shown switch could have been equivalently written as

 [None/
 One/
 Two/
 Many]

 because A-code ignores any line-leading (and line-trailing) spaces in text
 definitions.

Simple text switches, explicitly qualified

 This text morphing feature was introduced by Dave Platt to handle messages
 such as the report of dwarf attacks on the player. Here's the definition of
 a text called knives.thrown and containing two text switches:

 TEXT KNIVES.THROWN
 [/One/Two/Three/Four/Five/Six/Seven/Many] nasty sharp
 kni[/fe is/ves are] thrown at you!

 This is displayed by an A-code text-handling language primitive SAY:

 say <text_name>, [<explicit_qualifier>]

 or in this specific case

 say knives.thrown, thrown

 The second parameter ("thrown") is in this case the name of a
 variable holding the number of knives thrown at the player, though from the
 point of view of the language syntax, it could be a constant, or any A-code
 entity possessing a value (e.g. an object or a location). In the absence of
 an implicit qualifier (to be explained later), this value is used to index
 any text switches embedded in the text supplied as the 1st parameter, where
 switch elements are counted from zero. So, if one knife is thrown, the
 displayed message will read:

 One nasty sharp knife is thrown at you!

 But suppose more than one knife is thrown, say 5 of them. The first switch
 is unproblematic -- its index values go from 0 to 8 -- but the second switch
 only has elements 0, 1 and 2. This is handled by the primary rule of text
 switches: use the index value nearest to the qualifier value. So
 the message becomes:

 Five nasty sharp knives are thrown at you!

 While in this example, the explicit qualifier was supplied as a variable,
 any A-code entity which has a value associated with it (e.g. an object, or a
 location, or a plain numeric constant) is also acceptable as an explicit
 qualifier.

Repeated text switch elements

 In practice, text switch elements can be long, multi-line strings, and
 sometimes it is necessary to have some of the elements repeated. For
 example, if a player has a purse which can contain some coins, its contents
 could be described by the following text:

 TEXT PURSE.CONTAINS
 There [are/is/are]
 [no/one/two/three/several/several/several/several/
 several/several/many] coin[s//s] in the purse.

 Such repetition is clearly wasteful, as well as tiresome, and the
 maintenance of switches with repeat elements is unnecessarily complex,
 because any changes to the repeated elements need to be applied to each of
 them.

 To get around this, A-code interprets a switch element consisting of the
 single character = to mean a repeat of the immediately preceding
 element. This in turn may have the same special format, in which case its
 preceding element is considered. For obvious reasons, the first (zero index)
 element of a switch may not be a repeat element.

 Using this convention, the above PURSE.CONTAINS text could be defined as

 TEXT PURSE.CONTAINS
 There [are/is/are] [no/one/two/three/several/
 =/=/=/=/=/many] coin[s//s] in the purse.

 When qualified by an actual number of coins, this would specify the number
 as several for 4 to 9 coins and as many for any more than
 that.

Word and value holders

 A-code texts can also contain word and value place-holders, which get
 replaced dynamically at run-time by words or values specified by the
 explicit qualifier. Place-holders of either kind can occur both outside and
 inside text switches.

 The dollar sign $ is used as a value place-holder. If an unescaped
 dollar sign is encountered in a text to be displayed, and if the text is
 used with an explicit qualifier, the dollar is replaced with the numerical
 value of the qualifier. For example, the PURSE.CONTAINS text defined in the
 last section, could be re-defined as

 TEXT PURSE.CONTAINS
 There [are/is/are] [no/$] coin[s//s] in the purse.

 In this case, the A-code statement

 say purse.contains, 13

 would result in the display of

 There are 13 coins in the purse.

Of course, as before, any A-code value-bearing entity (variable,
location, object...) could be used as a qualifier, instead of a
constant value.

 A word place-holder is signalled by an unescaped hash sign #, and is
 conceptually similar, except that a word, rather than a value, indicated by
 the explicit qualifier is inserted in place of the hash sign. Just what can
 be used as an explicit qualifier in this case is a bit more complicated.

 All declared vocabulary terms obviously have one (or more, if there are
 synonyms) actual word associated with them. At the author's discretion, most
 objects and possibly some locations will also have an associated vocabulary
 word or words. In all these cases there will be a "primary" word
 -- the first one declared in the list of synonyms (if there are any
 synonyms). It is this primary word that gets inserted in place of a word
 place-holder.

 All of this is easier to understand on some practical illustrations. Take
 for example the object chair1 with the associated nouns "chair"
 and "seat". Should there be a text declared as

 TEXT NO.KILL.THINGS
 The # is not something mortal, so cannot be killed!

 and an object declared as

 OBJECT -CHAIR1, CHAIR, SEAT

 where the name CHAIR1 is explicitly excluded from the player's vocabulary,
 then the statement

 say no.kill.things, chair1

 would produce

 The chair is not something mortal, so cannot be killed!

 What makes this much more useful than may appear at the first glance, is the
 fact that A-code variables may store either values or pointers
 (references, to you Algol fans!) to arbitrary A-code entities. Hence if the
 game code executes somewhere the statement

 lda target, chair1 # Point variable TARGET at object CHAIR1

 where "target" is a variable name, then a subsequent statement

 say no.kill.things, target

 will produce exactly the same display text as if the object
 "chair1" or just the simple noun "chair" were used as
 the explicit qualifier.

 Word place-holders really come into their own because the mandatory A-code
 variables ARG1 and ARG2 hold respectively the verb and the noun of the
 player's last command. So assuming that the player said "KILL
 CHAIR", then

 say no.kill.things, arg2

 would once again tell the player that chairs are not for killing.

 However, there is a further subtlety here, when it comes to using player
 command words pointed at by the ARG1 and ARG2 variables, because in this
 case what is echoed as a part of the response is not necessarily
 the primary word associated with the referenced object, but the word
 actually used by the player (allowing for expansion of abbreviations, typo
 correction and vocabulary folding -- see the section on the full 3D
 structure of the A-code vocabulary). So
 if the player typed "KILL STO" (note the abbreviation of STOOL to
 STO, assumed to be unambiguous in this example), the displayed response
 would be

 The stool is not something mortal, so cannot be killed!

Word place-holders can also appear both within and without text
switches, but we'll cover that somewhat later on, under the heading of
switch and holder interplay.

Simple implicit qualifiers

 Not all texts need explicit qualification. For example, any texts associated
 with objects or locations (i.e. various forms of object and location
 descriptions) are deemed to be implicitly qualified by the current state of
 the object or location -- i.e. by its current internal value.

 Take for example the object BATTERIES defined as

OBJECT BATTERIES, =BATTERY
 [/Fresh/Worn-out] batteries
 %[There is a pair of brand-new batteries in the goods tray./
 There are fresh batteries here./
 Some worn-out batteries have been discarded nearby.]
 &The two batteries are just the right size and shape for the
 lamp. Both are marked as "[BRAND-NEW/FRESH/WORN-OUT]" in
 chunky [blue/green/red] letters.

 which has the usual triplet of the inventory, ordinary and detailed
 descriptions. Each of these contains one or more text switches, which will
 get automatically qualified by the state of the object. So for instance, if
 the batteries are spent, the statement

 describe batteries

 will display

 The two batteries are just the right size and shape for the
 lamp. Both are marked as "WORN-OUT" in chunky red letters.

 Similarly the INVENTORY command and the general LOOK command will display
 their appropriate descriptions qualifying the embedded text switches by the
 object's state.

 It is important to note that implicit qualifiers always override
 any explicit qualifiers -- a point which will have a great significance in
 the next section. For now it is sufficient to observe that

 describe batteries, 0

 would be completely pointless.

Dynamic implicit qualifiers

 As already noted elsewhere, A-code texts also carry an internal state (or
 value), initialised by default (like all A-code values) to zero. Note,
 however, that to avoid overriding explicit qualifiers in simple text
 switches, internal text states are only used as implicit qualifiers if a
 "method" for their manipulation is given as a part of the text
 definition. Formally, a full text definition looks like this:

 TEXT [<method>] <text_name>
 <line_of_text>
 [....]

 where <method> is one of increment, cycle, random
 and assigned. All of these have different effects.

	
 If the method specified is increment, then every time the text is
 displayed, its internal state is incremented by one, until it reaches the
 number of elements of the switch with most elements embedded in the text.
 Here is an example from Adv770:

TEXT increment ONCE.IS.ENOUGH

 [And thank goodness for that! /]I [/really /*really* /
 REALLY]don't know why you decided to go and get lost
 in that dark forest. Let's say [once/twice/thrice/
 enough] is enough and not do it again, huh?

 This will automatically produce messages of increasing exasperation, as
 the value of the text tick up after every use, finally sticking at the
 value of 4.

	

 The cycle method also causes the internal text state to increment by
 one, but the index value used by each individual switch within the text is
 the state value modulo the switch size, and the state gets reset to zero
 once it reaches the least common multiple of all switch sizes within that
 text.

 This is best demonstrated on a purely artificial example:

 TEXT cycle DIGITS
 [1/2] [1/2/3] [1/2/3/4]

 If used repeatedly, the state of this text will increment by one from zero
 to 11 and then return to zero again and repeat the same cycle. In the
 process it will produce successive displays "1 1 1", "2 2
 2", "1 3 3", "2 1 4", "1 2 1", "2 3
 2", "1 1 3", "2 2 4", "1 3 1", "2 1
 2", "1 2 3", "2 3 4", "1 1 1" etc...

 As you can see above, each of the switches cycles independently of the rest,
 yet only one text state value is driving the whole process. This is very
 useful in assembling automatically at run-time a wide variety of responses.

	

 The random method does what one would expect. After the text is
 displayed using its current state value, this value is reset at random to a
 value within the index range of the largest embedded text switch. The new
 value chosen is guaranteed to be different from the current one, so for
 switches with two components, this method acts exactly as the cycle one.

	

 The assigned method is really a pseudo-method in that it does not
 actually do anything, other than enabling the text value as an implicit
 qualifier. Without it, the internal text state is ignored by switch
 processing, and an explicit qualifier has to be supplied instead.

 It should be noted that none of the above described methods, nor the
 "null" non-method (i.e. when no method is specified) preclude the
 state value to be assigned into a text or numerically manipulated and
 examined like any ordinary variable. So for example, taking the above
 defined DIGITS text, the statements

 say digits # Internal state starts from 0!
 add digits, 10 # It got incremented to 1, will now be 11
 say digits # It's now 11 will be reset back to zero
 say digits

 would result in "1 1 1", "2 3 4", "1 1 1"

 In-line texts can also have dynamic implicit qualifiers. If such a text
 starts with the colon character ':', followed by a letter, followed by
 another colon, these three characters are stripped off and a dynamic method
 is associated with the in-line text in question on the basis of the letter
 between the two colons: i for increment, c for
 cycle, r for random. Note that the absence of the
 assigned pseudo-method, on the grounds that there is no way for an
 in-line text to be referred to by the rest of the A-code source.

Switch and holder interplay

 Now that we have been through the details of implicit qualifiers, the
 interplay between text switches and place-holders can be stated very simply
 as two rules:

	
 Only explicit qualifiers are used when substituting for place-holders of
 either kind.

	
 For processing text switches, implicit qualifiers always override explicit
 qualifiers.

 This enables responses such as exemplified by this Adv770 text:

TEXT cycle ITS.JUST.A
 It's just a #. [Nothing very remarkable about it/Not
 remarkable in any way/Nothing special to it/The apt
 description is "unremarkable"].

 The typical use for this text is

 say its.just.a, arg2

 which will replace the word place-holder in the text with the noun from
 the player's last command, while cycling in its successive uses through
 its embedded text switch.

 It may at first appear strange that implicit qualifiers are ignored in
 place-holder substitution, while explicit qualifiers are overridden by
 implicit ones for switch processing. However, this arrangement does exactly
 what is often wanted, because it makes it much more sensible to have
 place-holders within text switches. Again, an example from Adv770 is
 probably a good illustration:

TEXT cycle NOCOMPRENDE.VERB
 [My ignorance shames me, but I do not know what action
 might be signified by "#"./Alas, my vocabulary is too
 limited to encompass "#". Try some other verb?/Very
 remiss of me to be sure, but I've never learned to "#"./
 To my shame, I have no idea what you mean by "#"./"#"?
 Sorry, I don't what it means./I am afraid "#" is not a
 verb I've ever learned./Ahem... "#" is not in my
 dictionary. Would you care to re-phrase?/Regrettably,
 that is not something I know how to do.]

 If the game fails to make sense of the player's verb, all it has to do now
 is

 say nocomprende.verb, arg1

thereby producing a wide variety of responses.

 As an aside, in practice I find that the cycle method is much more
 useful for this purpose than the random one. Contrary to our
 intuitive expectation, randomness tends to be non-uniform (i.e.
 "clumpy") and hence requires a large number of options, if obvious
 repetitions are to be avoided.

Text tying

 As already noted, A-code variables can be in fact pointers to other A-code
 entities. The same is true for internal values of A-code texts. A text can
 be "tied" to another value-bearing entity, thereby removing the
 need for the game code to explicitly ensure the text value stays in sync
 with the state of that other entity.

 In effect, tying texts to other entities is also a text "method" in that it
 activates the text's implicit qualifier (which in this case happens to be
 the value of the entity to which the text is tied). Because this additional
 text method is not purely internal to the text, there may be reasons for the
 tying to be performed dynamically within the game code. Hence tying is
 performed by means of an executable language statement, rather than in text
 declaration.

 Once again, an example may be of help. Adv770 has a quartz seal, which can
 have one of two states. If the player tries to examine the seal when it is
 not in his inventory, the game tells him the seal is too small and needs to
 be picked up. The actual wording of this admonition depends on the state of
 the seal, hence the game initialisation code contains the statement

 tie pick.up.seal, seal

 This effectively ties the value of the text PICK.UP.SEAL to the value of the
 object SEAL. From now on, if the state of the object changes, the message
 displayed by

 say pick.up.seal

 will automatically change to match, because PICK.UP.SEAL contains a
 two-component text switch.

 Yes, in this particular case one could use SEAL as an explicit qualifier:

 say pick.up.seal, seal

 The seal example merely illustrates the technique. It is too simple to show
 the justification of that technique. The actual motivation for introducing
 text tying in A-code was provided by my efforts to resolve a highly complex
 problem of constructing a location description which depended on several
 independent factors. It is far too complex to be presented as an
 illustrative example.

Text nesting

 Sometimes a number of separate messages (e.g. location descriptions) consist
 of a part which is common to them all, and another part which is specific to
 a given message (or group of messages). This can present maintenance
 problems (e.g. fixing a typo in all identical parts) and is also
 wasteful. A-code offers an alternative approach. The common message part can
 be defined as a separate text fragment (i.e. a text without a trailing
 end-of-line character), which can be "nested" within individual
 messages.

 An A-code message text may include the symbolic name of another text
 enclosed in unescaped braces (i.e. curly brackets): {}. When the
 message is displayed, this construct gets replaced with the text indicated
 by the text name within the braces. The nesting mechanism is recursive, so
 the nested text may have further texts nested within it.

Here's an example from
Adv770, showing the declarations of the first six of the Adv550's ice
tunnels. It uses double-level nesting.

FRAGMENT INTRICATE.TUNNELS
 You are in an intricate network of ice tunnels.
#
FRAGMENT ICE.DEAD.END
 {INTRICATE.TUNNELS} The only exit is
#
FRAGMENT ICE.TUNNELS
 {INTRICATE.TUNNELS} Exits lead
#
PLACE ICE.CAVE.1
 {ICE.TUNNELS} north and west.
#
PLACE ICE.CAVE.1A
 {ICE.DEAD.END} south.
#
PLACE ICE.CAVE.2
 {ICE.TUNNELS} north, east and west.
#
PLACE ICE.CAVE.2A
 {ICE.TUNNELS} north and south.
#
PLACE ICE.CAVE.3
 {ICE.TUNNELS} north and east.
#
PLACE ICE.CAVE.3A
 {ICE.DEAD.END} south.

 Nested texts may have their own implicit qualifiers, of course. If the top
 level text is used with an explicit qualifier, this is passed on as an
 explicit qualifier to all nested texts, to any depth.

 As a special case, A-code also permits nesting of the ARG1 and ARG2
 variables, which are treated as the words actually typed by the player
 (possibly expanded from an abbreviated state, and typo-corrected). This is
 used, for example, as follows:

 TEXT YOU.DO.IT
 You {ARG1} the {ARG2}.

 If the player typed (e.g.) "G LAMP", and succeeded in picking up the lamp,

 say you.do.it

 would display "You get the lamp."

Appendix A: A-code text-handling primitives

	say <text_name>, [<qualifier>]

	
 Display the named text with an optional explicit qualifier.

	resay <text_name>, [<qualifier>]

	
 Like say, but completely replaces any text output accumulated since
 the last prompt.

	append <text_name>, [<qualifier>]

	
 Like say, but strips off any end-of-line characters at the end of any
 text output since the last prompt, before displaying the named
 text.

	quip <text_name>, [<qualifier>]

	
 Like say, but having displayed the text, aborts all further
 processing and jumps to the top of the main loop (i.e. equivalent to a
 say immediately followed by a quit).

	respond <vocabulary_word> [...] <text_name>,
[<qualifier>]

	
 Like quip but executed conditionally -- only if the player's last
 command contained any of the listed vocabulary words.

	smove <location> <text_name>,
[<qualifier>]

	
 An amalgam of say and move, equivalent to saying the specified
 text and then moving the player to the nominated location.

	vocab {<object>|<place>|<verb>}, {<place>}, {<flag>}, {<text>}

	
 This can be thought of as a wrapper for the SAY directive, which is used to
 display game's vocabulary in a context sensitive manner (e.g. omitting any
 nouns referring to objects the player has not yet seen). See the section
 dealing with A-code vocabulary handling.

Appendix B: Special characters in text definitions

 The following characters are have special meaning in text definitions, and
 have to be escaped with a reverse slash if they are to be displayed
 "raw".

	 (reverse slash)

	
 A universal logical escape character. Any immediately following character
 other, including the reverse slash itself, but excluding end-of-line, is
 treated as a literal character with no special meaning.

 	$ (dollar)

	
 A value place-holder, replaced by the current value of the explicit
 qualifier

 	# (hash)

	
 A word place-holder replaced by the primary word associated with the
 explicit qualifier.

 	/ (forward slash)

	
 If found as the first non-blank character on a line, the forward slash is
 replaced by a line feed, except if it is the very first non-blank character
 of the whole text definition, in which case it issimlpy removed. Any blanks
 immediately following it are not stripped off. If a forward slash is found
 within a text switch, it delimits text switch components. Not special
 otherwise.

	[and] (square brackets)

	
 Signal the beginning and the end respectively of an embedded text
 switch.

	{ and } (curly brackets or braces)

	
 Enclose the symbolic name of a nested text.

 	< and > (angle brackets, or less-then and greater-then)

	
 These enclose HTML tags. All tags are quietly removed in non-HTML modes,
 echoed as they are otherwise.

 	+ (plus sign)

	
 If found as the first non-blank character of a line, signals an individually
 centered line. Not special otherwise.

	= (plus sign)

	
 If found as the first non-blank character of a line, signals a line of a
 centered block. If found as the single character constituting a text switch
 component, represents a back reference to the previous component. Not
 special otherwise.

	_ (underscore or underline)

	
 A forced blank, not removed by the line-trimming mechanism

Appendix C: Handling anonymous texts (deprecated!)

 Anonymous texts can be only handled through pointers. Count text
 declarations backwards from the anonymous text in question, until you come
 to a named text. The resulting count is the anonymous text's offset from
 that named text. Point a variable at that named text and then add the offset
 to the variable. The variable now points at your anonymous text and all
 A-code primitives which handle automatic indirection, will accept the
 variable as a reference to the anonymous text.

 Here's an example in the shape of a complete A-code test program:

 style A-code 12
 TEXT FIRST.TEXT
 First text
 TEXT
 Second text
 TEXT
 Third text
 init
 local ptr
 lda ptr, first.text
 add ptr,2
 say ptr
 stop
 repeat

 It will print "Third text" and then stop. (NB: The repeat section is null,
 but the translator will complain if it is absent.)

Debugging A-code games

 Since A-code sources get translated into ANSI C for compiling and linking,
 debugging can performed on the C level as well as on the A-code level.

C-level debugging

 C-level debugging rarely required, but if necessary, can be done using
 standard debugging tools after building derived C sources into an executable
 with the -g option. If using gcc it is also useful to add -gdwarf-2 -g3,
 since that makes GNU debugger gdb understand macro names in the C code.

 However, derived C sources are not human-friendly because they use numerical
 refnos to reference game entities. To assist code comprehension, the
 acdc translator has the -d command line option, which adds to the
 generated C code printout (on stderr) of A-code source lines being executed.
 This makes game debugging, be it with with gdb (or similar), or just by
 visual inspection, much easier.

A-code level debugging

 Most A-code debugging takes place on the level of the A-code
 language itself. While there is no A-code debugger, there are some useful
 debugging tools.

Runtime procedure call trace

 As already noted, acdc's -d command line option has the effect of
 showing at run-time on stderr A-code lines effectively being executed. This
 display includes the name of the source file and the line number of
 the code line being shown. Since the display is on stderr, it can be
 diverted into a file, regardless of the game's build. In the console mode,
 where by default both stdout and stderr are shown to the player, game
 response to a command comes after this listing of source lines, so that
 the game is still playble. Thus, for example:

 ? out
[...]
repeat.acd:934 ifeq context, none
repeat.acd:935 ifnear door1
repeat.acd:936 and
repeat.acd:937 ifeq waterfall, opened
repeat.acd:938 and
repeat.acd:939 ifeq dwarven, 0
repeat.acd:943 iflt stage, adventuring
repeat.acd:946 input
 You're at end of road again.

 ?

Cross-reference lists

 The acdctranslator's -x option makes it emit a cross-reference file
 .xrf. This file can be further processed by the Perl script
 sortxrefs supplied as a part of the A-code sources package, which
 read the .xrf file and produces three files, suffixed respectively with
 .xrefs, .nrefs and .rrefs.

 The .nrefs file list game's named entities in alphabetical order,
 associating each with the refno assigned to it by the translator.

 The .rrefs file also lists entity names and their associated refnos, but
 this time in the refno order.

 Finally, the .xrefs file is the most useful one of the lot. It is sorted
 on entity names and shows where each entity occurs in the source code,
 differentiating between its declaration and its use. Here is a brief
 extract from adv770.xrefs (the whole file runs to over 41 thousand lines):

 aurora.borealis TXT 7879 text.acd
 aurora.borealis txt 11756 at.acd
 automatic.gate TXT 2590 text.acd
 automatic.gate txt 690 actions.acd
 automatic.gate txt 9155 at.acd
 automatic.gate txt 9177 at.acd
 available STATE 597 defs.acd
 available state 15701 at.acd
 available state 15714 at.acd
 awarded STATE 598 defs.acd
 awarded state 15715 at.acd
 awarded state 15717 at.acd
 awarded state 2154 procs.acd
 axe OBJ 799 objects.acd
 axe obj 702 actions.acd
 axe obj 726 actions.acd
 axe obj 778 actions.acd

 So, for example, the object AXE is declared (type is in capitals!) on line
 799 in the file objects.acd and referenced (type in lower case) in lines
 799, 702, 726, 778... in the file actions.acd.

Game data dumps

 The minor directive DUMPDATA, dumps the current state of the game to
 standard error. The default display contains no symbolic names (because they
 are not known to the kernel), so interpreting it requires constant reference
 to the above mentioned cross-reference files. This is not at all convenient.

 However, if the game is translated int C with the -d option, or if
 its source code defines the special variable ENTNAME, entity names are
 passed on to the kernel and are used in the dump. Here are some fragments
 of such a dump:

================= OBJECTS =================
....
 5 it 0 1000000000000000 at 0
 6 keys 0 1001000000000000 at 65 building
 7 lamp 0 1001000000000000 at 65 building
....
================= PLACES =================
 63 road 0 0101110000000000
 64 hill 0 0101000000000000
....
================= WORDS =================
 192 again
 193 carry
 194 drop
....
================= VARIABLES =================
....
 322 penalties 0 0000000000000000
 323 here 63 => road
 324 there 63 => road
 325 status 1 0100000000000000
....
================= TEXTS =================
 502 intro 0
 503 typo 0 cyclic
....
 693 plant.2 0 tied to 27 plant
...

 For each entity, the dump gives its refno, its name and (if appropriate) its
 value, followed by (if appropriate) its properties bit screen (a.k.a.
 flags). For objects, their location is given (as location refno and name, if
 any). If a variable is a pointer to another entity, the entity pointed to is
 shown (its refno is the variable's value). Finally, if a text has morphing
 features, it's type is shown and, for typed texts, the entity to which they
 are tied.

 By default all of the game's data is dumped, but one can choose to dump only
 data pertaining to a particular type of vaue-bearing entity by adding
 OBJECT, PLACE (or LOCATION), VARIABLE (or VARS) or TEXT as an argument to
 DUMPDATA.

 Game data is dumped either to stderr or, if the game is being logged
 (i.e. was invoked with the -l command line option), to the log file.

 As the simplest possible use, you can define DUMPDATA as a verb with a
 corresponding action:

verb dumpdata
action dumpdata
 dumpdata
 quit

 Or, more sensibly, you can make DUMP one of optional "wizard"
 actions (see below).

The CHECKPOINT minor directive

 CHECKPOINT minor directive is another debugging tool. When executed, it
 reports its own location (file name and line number) in the A-code source.

 ? n

=== Checkpoint: procs.acd, line 37 ===
 You are at the end of the road again.

 ?

 What makes this useful is the fact that changing executable A-code source
 has no effect on its ability to restore saved games. Thus it is safe to add
 CHECKPOINT statements in a suspect piece of code in order to track problems
 in a saved game.

Constructing non-integral "wizard" mode

 A-code's unusual feature of procedure groups permits construction of
 debugging commands (a.k.a. the wizard mode) as an optional add-on by
 using the INCLUDE? major directive. Once again this is made more useful
 by upward compatibility of saved games.

 While A-code permits entities being used before being declared,
 it is useful to place all executable code after all declarative code.
 (This does not, of course, preclude entities being used before
 their declarations, since A-code texts can embed references to
 game entities.) If that's how code is arranged, adding an optional
 source file (via the INCLUDE? major directive) in between declarations
 and executable code has two interesting effects:

	
 It has no effect on compatibility with games saved by the same code, but
 without the optional file. (See the section on
 upward game compatibility for an explanation). Note, however, that the
 reverse does not apply. If the optional code defines any additional
 entities (objects, places, variables or morphing texts), games saved by a
 version with that optional code cannot be loaded by the version without it.

	
 The INCLUDE? major directive allows procedures (including REPEAT, ACTION and
 AT ones) to pre-empt procedures of the same name within the rest of the
 game's code. Such an intercepting "wizard" procedure can do its
 stuff and (a) QUIT, terminating the current command loop, (b) RETURN,
 terminating execution of the procedure group of that name (i.e. skipping the
 rest of the so-named procedures, or (c) PROCEED, letting the rest of the
 procedure group execute as it would do without the optional code.

For example, suppose the game contains

verb find
action find
 quip "You'll have to find thing out for yourself. "

Suppose further that the optional code contains

variable entname
action find
 ifeq status, 2 # Player trying to find something
 ifflag arg2, object
 say "f:Object {ARG2} "
 locate entname, arg2
 quip "is at {ENTNAME}." # Terminates command loop
 else
 quip "{ARG2} is not an object!"
 fin
 fin

 This would modify the behaviour of the command FIND to show the location of
 of a nominated object, or, if no object nominated, to do exactly what it
 would do without the optional code. For ease of debugging, optionally
 included code should also have commands to toggle "wizard" mode on and off
 and other wizard mode commands whould simply PROCEED if the wizard mode
 is off.

 There can, of course, be more than one optionally included file, positioned
 at various places in the source code, as appropriate. Nor is it necessarily
 the case that such includes must come before other code. E.g. my A-code port
 of Adv350 (written in order to experiment with mobile NPCs) has an extensive
 set of "wizard" tools, which is included after the NPC
 movement and actions code. It defines its own vocabulary list, that can be
 displayed by VOCABULARY WIZARD:

 ? voc wiz

 Wizard (i.e. debug) commands:

 close cave - triggers the next cave closure stage
 decrement <entity> - decrement state value of object or location
 data [obj|loc|var|text] - show game's data
 fetch <object> (obtain) - fetch the object from wherever
 find <object> - go where the object is
 first - forces first dwarf, if axe not seen
 fly <location> (teleport) - go to the named location
 glow - toggle magical illumination
 increment <entity> - increment state value of object or location
 next - go to the next higher location
 notbeen - show locations not yet visited
 previous - go to the next lower location
 runout - sets event clock to zero
 [show] {numbers|npcs} - toggles loc number/npcs repeated display
 show <entity> - Displays entity's current value
 where - shows where one is (and came from)
 where treasure - shows valued objects (sorted on seen flag)
 where water - shows water-holes
 where <object> - shows object's location
 wizard {on|off} - switches wizard mode on or off

 ?

 The optional include file debug.acd can be found in the A-code source of
 Adv350 available at
 https://mipmip.org/adv350 in the file opt/debug.acd.

 If using the advbld script to build Adv350 (or Adv770), the -W script
 option copies opt/debug.acd to where it will be found by an optional include,
 builds the game and then deletes the file copy.

A-code language history (as I recall it)

The main purpose of this document is to explain (in response to some requests)
why some aspects of my A-code implementation are the way they are, and what
the future might hold if I get around to it.

A-code is the language developed by Dave Platt in order to write his
influential Adv550 expansion of the classic game Adventure by Crowther and
Woods (Adv350 in the modern nomenclature). Originally written in PL6, a
Fortran 77 implementation of the original A-code engine was distributed in the
late 1980s together with the the Adv550 A-code source.

Dave Platt's A-code engine had a "munger" and an "executive",
both written in F77. The munger took the A-code source and produced a
tokenised pseudo-binary. The executive was was effectively a virtual machine
which executed the pseudo-binary. The lightly encoded game's text was in a
separate file.

I first made use of this original A-code implementation to merge Luckett's and
Pike's Adventure II (now known as Adv440) with Adv550 and Platt's Adv550 into
Adventure4, which later evolved into Adventure4+ (now known as Adv660).

The initial Adventure4 and then Adventure4+ (1983 - 1985/6, on Primes)
implementation took the A-code architecture as it was. The only changes to the
munger/executive were in improving the command parser (e.g. automatically
allowing all words to be abbreviated to the minimal unambiguous length,
chaining commands on one line with semicolons, and providing AGAIN for command
(simple or compound) repetition.

In September 1990 I embarked on re-implementing A-code in C on Unix, the main
aim being to teach myself C (my previous expertise was first in Algol/Algol68,
then in Fortran4, then in Fortran77). I later joked that the new version was
dedicated to the proposition that a real programmer can write Fortran in any
language. That implementation was the seed of the current version and it
moved away from Platt's in one crucial step, the full significance of which
did not transpire until much later. Instead of replicating Platt's virtual
machine approach, I wrote acdc, which translated A-code directly into
compilable C, with game-independent kernel C source providing a library of
standard calls used by the translated code.

The reason for this shift was performance. Adventure4+ by that time became too
large and complex, yet I wanted it to run on ordinary PCs as they then were.
Virtual machine interpreter of pseudo-binary struggled with that, but compiled
C worked just fine.

To accommodate minuscule (by modern standards) memories standard at the time
and the slow speed of disk access, I nicked from Prime an outline of their
paging algorithm, and built that into the kernel, together with the ability to
report locate demands, the number of locate buffers being specifiable at
compilation time. This mechanism is still present within the kernel, and is
required to build DOS versions of games. The kernel also provided the
option of reading all texts from the data file as required, with no paging
mechanism, or to load the data file entirely into memory on startup. Initially
there was no option for pre-loading all of the text into memory -- compilers
of the time tended to choke on that.

Unix (Irix in fact) and later Linux became the default platform. Initially I
built DOS/Windows executables by using djgpp under DOS. Later DOS and Windows
builds diverged. The DOS version is now created using djgpp (run under wine),
whereas the Windows version gets built using MinGW and packaged using InnoSetup.
At some stage a Mac build was added as well.

As memory capacities grew and general machine performance improved, I first
added the option to build the whole game as a single executable with no data
file – all text begin stored in initialised arrays in the C source. Later
this became the default. Thus things stood until I embarked on Adv770, which
is when I discovered some unexpected upsides and downsides of the approach I'd
taken.

I needed the game to be tested by others, but I knew from experience that
it would be foolish to rely on testers to report all problems. Without knowing
what is supposed to happen, it is not necessarily obvious whether things are
going wrong or not. I simply had to have access to testers' log files. The
only way this could be achieved was to run the game through a web interface
– in the cloud, as one would say these days. Unfortunately, as the
acdc/kernel implementation of A-code stood at the time, this simply was not
possible. An A-code game was simply an executable, taking player commands from
standard input and responding on standard output in a continuous loop.

So I sat about to implement a single-turn operation mode. In this
mode, instead of waiting for play command, the game would automatically dump
its current state to disk and exit. And when a new command arrived via a web
interface, the game would be restarted and the saved state automatically
loaded before processing the command. This would be easy enough with Dave
Platt's original virtual machine approach, but my translate-compile-and-run
implementation entailed that in an A-code game there could be only a single
place where the player could be asked for input. Specifically, any use of the
QUERY directive, used in Adv550 and Adv660 to handle yes/no queries, was
simply out.

My eventual solution was to implement the context mechanism and replace
any use of query with setting the special variable CONTEXT to a unique
value, specifying the nature of the query, before saving the game state and
exiting. Once a response arrived from the player, the game would restart and
if the value of the restored CONTEXT indicated that a yes/no question had been
asked, it would evaluate the answer in the same way as it would have done if
QUERY had been used. This permitted cloud-based operation (initially CGI,
later PHP). It also, quite unintentionally, enabled all A-code games
(even Dave Platt's original code of Adv550) to have a persistent state. If
a game was simply interrupted (or... erm.. crashed), it could be restarted
from that point without being explicitly saved by the player.

Some internal changes had to be introduced to support this development, and
so the major version number of the acdc and the A-code kernel got incremented
from 10 to 11. Version 11 also brought in another innovation. All earlier
versions assumed games being played in a terminal emulator, and assumed
the display to be limited to 80 characters per line and 24 lines per
screenful. Version 11 added the ability to run a game in its own window,
initially by using the GLK library.

On the plus side, since there was no virtual machine to save the state of,
and I'd avoided using the QUERY directive, it was pretty easy to maintain
upward compatibility with testers' saved games, despite the game undergoing
some major bug fixing.

Adv770 was finally released in 2003, but I continued tinkering with my
A-code implementation anyway. 2008 brought version 12 of A-code, which removed
the requirement of declaring game's entities before they could be used. This
was achieved by changing the acdc translator to make two passes over game
source instead of one &ndash the first pass collected information on all game
entities being declared by the source and the second pass actually translated
the source into C.

In changing to version 12 I also took the opportunity of ditching GLK
because its Unix/Linux implementation of GLK had severe limitations (and used
really ugly, hard to change fonts). Instead an A-code game executable could
launch the default browser and then act as a very simple HTTP server, using
the browser as the user interface.

In 2013 Brian Ball asked for changes which would enable him to port Adv770
to iOS. This was an interesting challenge, since iOS demanded to be in charge
of the game's command loop. So the kernel was twisted yet again, to allow a
"library mode". Fortunately, this was not too hard to do, since the
game persistent mechanism introduced for the CGI/PHP operation could be adapted
for the purpose. The main difference being in returning accumulated text to
the calling routine, instead of displaying it to the player.

This change had a large unexpected payoff a year later, when I used
emscripten to translate the C-code generated by acdc into JavaScript, so that
it became possible to run the game entirely in an HTML 5 compliant browser.

 Finally, in 2020 (doesn't time fly!) I got around to making my
 implementation of A-code to be entirely UTF8 compliant. While UTF8 encoding
 could always be used in game texts and object/place descriptions, the
 challenge was to permit UTF8 in entity names and hence in player vocabulary.
 That done, I also extended non-vocabulary names convention to vocabulary
 word declarations which frees A-code games from any dependence on the
 English language by allowing one to safely re-define the default command
 parsing words AND, THEN and AGAIN. So if you want to write IF games in
 Japanese or Russian, you can! :-)

And that's where things stand at the time of writing.

Contents

Introduction to A-code styles

 The notion of A-code styles came relatively late, when I decided in 1990 to
 teach myself C by re-implementing the A-code engine using the
 translate/compile architecture, in place of Platt's original munge/interpret
 one. I wanted the new implementation to support both Platt's Adv550 and my
 own Adv660 (a merger of Luckett's and Pike's Adv440 with Adv550). Because
 there were some incompatibilities between A-code of Adv550 and that of
 Adv660 (most notably text switch components being counted from 1 or from 0
 respectively), it became necessary for a game's code to signal how it is to
 be treated. Logically enough, Platt's A-code was designated as Style 1.
 Remembering the many changes my form of Platt's munger/executive underwent
 before Adv660 was made generally available on the Net, I arbitrarily
 assigned Style 10 to the final version of Adv660. (Luckily it was not Style
 2, because years later it was convenient to assign Style 2 to the
 re-discovered Goetz's Adv580.) Hence the STYLE major directive, to fix the
 style of an A-code game. As things stand, style numbers are assigned as
 follows:

	Style 1 – the style of Platt's A-code source of Adv550.

	Style 2 – the style of Goetz's A-code source of Adv580.

	Styles 3 to 9 – lost in the mists of time, having existed
 briefly in the process of my merging of Adv440 and Adv550 into Adv660.

	Style 10 – the style of my A-code source of Adv660.

	Style 11 – the initial style of my Adv770.

	Style 12 – the current A-code style.

Taking Platt's A-code as the base, let's look at changes brought in by
different styles, bearing in mind that only the style 1 to style 10 transition
is of historical significance.

From Style 1 to Style 2

The style of Goetz's Adv580 A-code differs very little from Style 1.

	
 It relaxes in-line comment convention. While Style 1 in-line comments must
 start with the open brace character '{', Style 2 also permits square '[' and
 round '(' brackets as in-line comment delimiters.

	
 It introduces CIF and CENDIF major directives in order to use selectively
 normal or "bowdlerised" versions of some texts.

From Style 1 to Style 10

 Text switch modification and generalisation:

 Switch components are counted from zero rather than from one.

 Switches are permitted in all texts, including object and place
 descriptions.

 Multiple long object/place descriptions (%) deprecated - replaced by text
 switches.

 Changes to major directives:

 Deprecated LIST, NOLIST and XREF.

 Added NOISE (and preferred) as a synonym to NULLWORD.

 Added PROC (and preferred) as a synonym to LABEL.

 Added FRAGMENT.

 Deprecated SYNONYM in favour of OBJECT name list.

 Changes to minor directives:
 Added DOALL and FLUSH for handling GET/DROP ALL.

 Added IFHERE, IFINRANGE and IFIS.

 Added ITERATE, QUIP, NEGATE, CHOOSE and RANDOMISE.

 Deprecated ITLIST (synonym of ITOBJ).

 Deprecated AT, HAVE and NEAR.

 Deprecated EOF, EOI, EOR (subsumed into FIN).

 Deprecated NAME and VALUE (subsumed into SAY).

 Player interface

 Allowed compound commands.

 All player vocabulary words automatically abbreviated to the minimal
 unambiguous length.

 GET/DROP ALL can be enabled by game code.

 AGAIN can be enabled by game code.
 Object detailed description category (&).

From Style 10 to Style 11/12

Since enhancements that came in under style 12 are also retrospectively
available in style 11, it makes sense to lump 11 and 12 ogether for the
purposes of compaing the to style 10. The change from 11 to 12 was dictated
by a major surgery on the acdc A-code to C translator to make it
operate in two passes instead of one. The pupose was to allow game entities to
be referred to by game code before the relevant entity declarations. This is
particularlly handy in debugging via "wizard mode" code optionally
included in game source via the INCLUDE? major directive. See the section
on debugging A-code games.

 Changes to major directives:

 Added ARRAY, STATE, CONSTANT, FLAGS

 Canges to minor directives:

 Added FAKEARG and FAKECOM

 Added OTHERWISE

 Added IFLE, IFGE and IFNE

 Added IFHTML, IFTURN and IFCGI

 Added IFDOALL and IFTYPED

 Added LOCAL

 Added UNDO and REDO

 Added RESAY and TIE

 Added RESPOND

 Added SAVE and RESTORE

 Added INTERSECT

 Added VERBATIM and VOCAB

 Deprecated BIT, BIS, BIC in favour of IFFLAG, FLAG and UNFLAG respectively

 Deprecated KEYWORD, ANYOF and NEAR in favour if IFKEY, IFANY and IFNEAR

 Further functionality added:

 	ITOBJ takes flag and state supplementary arguments.

 	Multiple args for IFAT, IFIS, IFLOC

 	Multiple args for FLAG, UNFAG.

 	In-line texts.

 	CGI mode.

 	Library mode.

 	Local variables, and procedure arguments.

 	Context and undo mechanisms.

 	Typo correction, output word scanning.

 	UTF8 support.

cover.png
A-code

Documentation

Mike Arnautov

mipmip.org/acode

version: 2025-May-06

