

Table of Contents

 This tutorial will guide you through a basic A-code implementation of Roger
 Firth's nano-adventure "Cloak of Darkness".

	

	
Cloak of Darkness specification

	
A-code Program Structure

	
Player Vocabulary

	
Objects

	
Places (a.k.a. Locations or Rooms)

	
Game Initialisation

	
The Main Loop – House-Keeping

	
Declaring Named Procedures

	
The Main Loop – Player Input

	
The Main Loop — Game's Response

	
General Error Handling

	
Location-Specific Code

	
Verb-Specific Code

	
Remaining Actions

	
Finishing It Off

	
Game's Complete A-Code Source

Game Specification

 Here is Roger Firth's summary specification of Cloak of Darkness:

	
 The Foyer of the Opera House is where the game begins. This empty room has
 doors to the south and west, also an unusable exit to the north. There is
 nobody else around.

	
 The Bar lies south of the Foyer, and is initially unlit. Trying to do
 anything other than return northwards results in a warning message about
 disturbing things in the dark.

	
 On the wall of the Cloakroom, to the west of the Foyer, is fixed a small
 brass hook.

	
 Taking an inventory of possessions reveals that the player is wearing a
 black velvet cloak which, upon examination, is found to be light-absorbent.
 The player can drop the cloak on the floor of the Cloakroom or, better, put
 it on the hook.

	
 Returning to the Bar without the cloak reveals that the room is now lit. A
 message is scratched in the sawdust on the floor.

	
 The message reads either "You have won" or "You have lost", depending on how
 much it was disturbed by the player while the room was dark.

	
 The act of reading the message ends the game.

 This implementation of the game also will use non-mandatory object and
 place description sugegsted by Roger.

Style and Terminology

 A few words on style and terminology.

	
 Except in text messages to be displayed to players, A-code is completely
 case insensitive. As a personal convention, I use lower case in actual
 A-code code, except in declarations, where names of entites being declared
 are in upper case.

	
 When explaining code, I will be presenting code snippets in upper case in
 order to avoid excessive quoting.

	
 All declarative keywords (a.k.a. major directives) must start in
 column 1 (i.e. with no leadin spaces or tabs). A declaration is terminated
 by another non-comment) line starting in colum 1, or by the end of a
 file.

	
 A-code opcodes (a.k.a. minor directives) as well as any lines in declaration
 bodies must have at least one blank or tab preceding them. Beyond that,
 A-code does not care about levels of indentation.

	
 Comments are permitted everywhere, except within text declarations.
 The start of a comment is signalled by a hash (#) sign and A-code simply
 ignores the sign, any preceding blanks or tabs, and the rest of the line.
 (NB: Dave platt's version of A-code had a different comment convention.)

 Once you have an acode source file, you will want to convert it into a game
 executable. Other than an ANSI C compier, you will find everything necessary
 in the acode-12.91.tgz tarball. If
 you can use the advbld bash script, just give it the name of the
 source file and it will do the rest. If you cannot use a bash script, you'll
 need to do it "manually". First run the acdc translator,
 giving it the source file name or pathname as an argument. Then use an ANSI
 C compiler on resulting .c and .h files together with the three kernel
 files: adv00.c adv01.c and adv0.h.

Program structure

 The game starts with a one-off announcement of the player's arrival at the
 Opera House. For now, we'll skip the actual arrival message and
 use the traditional "Hello world!" instead.

init
 say "Hello world!"
repeat
 stop

 That's a fully functional A-code program, which will print its message and
 stop. The INIT and REPEAT code sections are mandatory. Either or both can be
 empty, though this would not make sense in any real game.

 INIT code sections are used for game initialisation. If there are several,
 they get executed in the order or their declaration. The REPEAT sections
 (also executed in the order of their declaration) constitute the main loop
 of the game. So INIT sections get executed once and then the game repeatedly
 executes the REPEAT sections in their order, until the stop directive
 is encountered.

The actual initial message for our game is a multi-line one, with some
lines being blank. Nevertheless, we could simply substitute it for
"Hello world!" in the program so far:

init
 say "
 The Cloak of Darkness

 Hurrying through the rain-swept November night, you're glad
 to see the bright lights of the Opera House. It's surprising
 that there aren't more people about but, hey, what do you
 expect in a cheap demo game...?

 "
repeat
 stop

 Notice that all text lines are preceded by some blanks – only major
 directives start at the beginning of a line. Any such leading blanks are
 ignored and successive non-blank lines are interpreted as a single line to
 be wrapped at runtime as appropriate. Within text definitions, blank
 lines can be completely blank (no spaces or tabs preceding end of line).

 However, I reckon this use of multi-line text is untidy and makes code less
 readable. So I'll use a named text instead.

text YOU.ARRIVE
 The Cloak of Darkness

 Hurrying through the rain-swept November night, you're glad
 to see the bright lights of the Opera House. It's surprising
 that there aren't more people about but, hey, what do you
 expect in a cheap demo game...?

init
 say you.arrive
repeat
 stop

 Note that no double quotes are used in defining named texts. The text is
 simply terminated by the next declaration (or end of file).

Player vocabulary

 The game specification does not tell us what actions the player must be able
 to perform. This being a minimalist implementation, we'll declare only the
 bare essentials. For example the player is originally wearing the cloak; do
 they need to REMOVE it before dropping it or hanging it on the hook? No.
 They clearly need to be able to pick the cloak up if they'd dropped it, but
 there no need to allow them to wear it again – so no WEAR either. Only
 actions clearly implied by the specification will be catered for.

 While A-code player command interface is at present restricted to the
 ancient verb/noun structure (no adjectives, prepositions or instruments), it
 also permits apparently complex commands, e.g. "drop everything except the
 ring and the orb then go out". This is achieved by the parser reducing such
 complex command to a series of one or two word simple ones. However,
 in constructing a game one can also cheat: in so far as adjectives are
 not necessary to identify objects, they can be simply ignored.

 All vocabulary words are automatically abbreviable to the smallest
 unambiguous length. By default, the A-code parser will also do approximate,
 one-typo matching of player's command words against the vocabulary, but in
 this tutorial we'll be switching approximate matching off, in order to avoid
 complications of dealing with ambiguous typos and such-like.

 Note that in the absence of any clashing vocabulary words (including
 objects, which I have not tackled yet), the four direction commands will be
 automatically abbreviable to their first letter.

So, verbs available to the player:

Game specification mandates just the four cardinal directions
verb NORTH
verb EAST
verb SOUTH
verb WEST
#
verb GET, TAKE # Both the player and game code can use these interchangeably
verb INVENTORY
verb DROP
verb READ # For reading the message in the bar room
verb HANG # To hang the cloak on the hook
verb LOOK
verb QUIT # Not in the spec, but every game should allow quitting
#
noise THE, THAT, VELVET, GO # Player command words to be ignored

 The NOISE definition tells the game which words in player's command are to
 be completely ignored. Thus GET THE VELVET CLOAK will be parsed as GET
 CLOAK, despite the parser's limitation to verb/noun commands. Similarly GO
 WEST will become simply WEST, which somewhat simplifies game's code.

 I sneaked in another feature here: comments. Comments are delimited by the
 hash sign. Full-line comments (with the # sign being the line's first
 character) are permitted everywhere – even within message or description
 texts. They are simply ignored. In-line comments are not allowed in texts
 (be it game's messages or object/place descriptions).

Objects

 The vocabulary definitions we have so far contain only verbs, but the
 game will obviously need nouns as well. These are mostly added via object
 and place definitions. So here's the first object definition:

object HOOK
 %A small brass hook is screwed to one wall.
 &It is just a small brass hook[/ with a cloak hanging on it].

 This defines an object and names it HOOK. By default, object names are
 automatically added to the player's vocabulary, so that names can be used
 (synonymously, if there is more than one) both by the player and by game's
 code. If for whatever reason some object name is to be excluded from the
 vocabulary, this is achieved by prefixing the name with a minus sign.

 An OBJECT declaration line is optionally followed by up to three kinds of
 object description: an inventory one, a long "here-is" one and a detailed
 one. The first two are displayed by the SAY directive (we'll get to it later
 on), depending on whether the object is carried by the player or is just
 present in the current location. The detailed description can be shown
 by the DESCRIBE directive, which is used to show the most detailed
 description available.

 In this case the hook can never be picked up by the player, so its
 definition omits the inventory description, which would have consisted of
 line(s) of text immediately following the OBJECT declaration line. The
 "here-is" description starts with a line prefixed with the % sign and can
 also consist of several text lines. Finally, the detailed description is
 signalled by the & sign at the beginning of a line and can also feature
 additional lines.

 In the hook's case, the detailed description contains a "text switch", which
 will display different text fragments depending on the internal state of the
 object. (All declarative features of A-code texts are covered at some length
 by relevant section of A-code
 documentation). If the hook's state has its default value of zero (or
 for that matter if it is negative), the description will read "It is just
 a small brass hook.". If it's internal state is 1 (or higher), the
 description will include the cloak. We could give these two values symbolic
 names for code clarity, but I'll leave that for an advanced tutorial.

Now for the cloak...

object CLOAK
 A velvet cloak[(worn)/]
 %A black velvet cloak [/lies on the floor/hangs on the hook].
 &It is a handsome cloak, of velvet trimmed with satin, and slightly
 spattered with raindrops. Its blackness is so deep that it
 almost seems to suck light from the room.

 This object does have an inventory description, which depends on the
 object's state, as does the long, "here-is" description. The cloak will have
 three states, which again could have symbolic names: worn, not worn (can be
 either carried or lying on the floor) and hanging on the hook.

 Finally, the specification says that there are three objects altogether, the
 message in the bar being the third one. Here it is, but I'll postpone its
 explanation until later. For the moment, just note that it has just
 one description with a couple of text switches.

object MESSAGE
 The message[has been carelessly trampled, making it difficult to read.
 You can just distinguish the words/, neatly marked in the sawdust,
 reads]...

 +YOU HAVE [LOST/WON] !!!

That's it for objects. Next come locations.

Game initialisation

 A full size A-code game can have quite large initialisation sections,
 setting up correct attributes for places, objects and texts. You may wonder
 why this is being done at run-time, rather than statically, as those
 entities are being declared. The reason is partly history, but there is also a much stronger reason, why
 this unusual arrangement persists: it is extremely helpful in guaranteeing
 upward compatibility of saved games, which, if done correctly, permits game
 players (and testers!) to upgrade the game withuot invalidating any existing
 game saves.

 In this minimalist implementation, though, there are no such attributes to
 set and this the initialisation code is sweet and short. Here it is,
 replacing the earlier suggested version:

init
 goto foyer # Move the player to the start location
 apport cloak, inhand # Give him the cloak
 apport hook, cloakroom # Put the hook where it belongs
 set message, 4 # Limits the number of moves in the bar
 say you.arrive

The minor directive GOTO places the player inthe FOYER.

 The first APPORT moves the object CLOAK to the location INHAND, an
 automatically defined location for objects held or worn by the player.
 The second APPORT puts the hook into the cloakroom. (Use of the
 word "apport" is Platt's little joke – it means transporing
 an object by occult means, without material agency.)

 Note, by the way, that all value-bearing entities (objects, places,
 variables and even some texts) are automatically initialised with value of
 zero, which for the cloak happens to correspond to being worn by the player.

 Finally, the SAY directive displays the previously defined named text. This
 directive is extremely versitile and cen be applied to any entity (text,
 object, place, vocabulary word) assiciated with text. It can also be applied
 to variables which point to any such entity. We'll see use of pointer
 variables later.

The main loop – house-keeping

 After initialisation comes the main program loop. This can be thought of as
 consisting of three parts. First comes the general per-turn house-keeping
 (e.g. determining whether the current location is lit, whether the player is
 getting thirsty, whether there is some NPC action to be announced...).
 Secondly, the player's input is obtained and parsed. Thirdly player command
 is responded to.

 For clarity, I prefer to separate them into individual REPEAT sections,
 which get executed in the order of their declaration. In this game, there
 isn't much house-keeping required:

repeat
 ifflag status, moved # Has the player moved?
 call describe.here # If so describe their new location
 fin

 Brief as it is, this section packs a lot of new stuff. Firstly, STATUS is a
 global variable. It must be present in any A-code game, so if not declared
 explicitly in the game's source, it is declared automatically by the
 acdc translator. We shall meet its other uses further on, but for the
 moment it is enough to know that like all variables (global or local), in
 addition to carrying a value, it has a set of binary flags associated with
 it. In this particular case, the relevant flag is called MOVED. This flag is
 optional – if declared by the game, it is set by the kernel to true if
 the last simple command resulted in a change of location and to false
 otherwise. We haven's actually declared that flag yet, but that's all right
 – A-code allows you to use entities before their declaration. So let's
 declare it now:

flags variable
 MOVED # Optional STATUS variable flag, maintained by the kernel

 This declares a flag which can be used with variables (but not places or
 objects).

 Back to house-keeping... As you may guess, the IFFLAG directive in the
 above code snippet checks whether the MOVED flag of the STATUS variable is
 set to true and if so, causes execution of the following code, up to the
 corresponding FIN directive closing the conditional code block. (Block's
 indentation is irrelevant and only used to enhance code readability.)

 In this case, the conditional code does nothing more than call a procedure,
 (that is a named chunk of code) called DESCRIBE.HERE. As the name suggests,
 it will describe the current location. Let's attend to it straight away.

Named procedure declaration

 Here's that procedure for describing locations:

proc DESCRIBE.HERE
 local optr # Local pointer to objects
 say here # Show description of current location
 itobj optr, here # Loop through objects at this location
 say optr # Show such objects
 fin # Loop terminator

 Once again, this brief declaration introduces several important concepts.

 The LOCAL OPTR statement declares a variable called OPTR, which is local to
 this code section (i.e. to this procedure). All other variables (whether
 declared explicitly by the VARIABLE major directive or are are supplied
 automatically by the A-code kernel) are global in scope. Declaration of
 local variables forms the sole exception to general rules in that any LOCAL
 declaration lines must be placed at the very beginning of the code
 section to which they apply.

 I've called this variable OPTR because it will be used as a pointer to
 objects. Pointers are just variables which happen to be referencing some
 game entity (object, place, text, word or variable). In almost all cases, if
 a variable containing a pointer value is used in some context where a game
 entity is expected, the effect is as if the entity pointed to were used. So
 in our case, the SAY directive will display the description of the player's
 current location, as if that location was explicitly named as its argument.

 The SAY HERE statement displays the description of the current location.
 This is because HERE is an automatic variable, which is maintained by the
 kernel and always point to the player's current location. (There is also the
 companion automatic variable THERE, which always points to the player's
 location prior to the last location change. We do not need it in this game.)

 The ITOBJ directive iterates through game's objects, executing for each one
 the following code, up to the matching FIN statement. It can be qualified by
 a location (as in this case) and/or by an object flag or flags, in which
 case any non-matching objects are ignored. Thus ITOBJ OPTR, HERE will only
 consider objects in the current location.

 As you may have gathered from the above, SAY OPTR will give the description
 of the object pointed to. It will not be the inventory description, which
 would be automatically used if the object in question were carried by the
 player. And it will not be the detailed description, because that is only
 shown by the DESCRIBE directive.

The main loop – player input

 Back to the main loop... It is time to obtain and parse theplayer's command.

repeat
 set status, no.amatch # Suppress approximate matching of command words
 input # Get and parse player's command
 ifeq status, 2
 and
 iflt arg2, 0 # Can't find 2nd command word in the vocabulary
 or
 iflt arg1, 0 # Can't find 1st command word in the vocabulary
 quip "Pardon?" # Command parse failure -- abort the main loop
 fin

 The INPUT directive considers the next simple command (a complex one may
 have been previously given). If the previous command (simple or complex) has
 been fully processed, it will first prompt the player for a new one. It will
 parse the verb/noun command thus obtained and will set three automatic
 variables: STATUS, ARG1 and ARG2.

 The STATUS variable gets set to the number of words in the command being
 parsed, which can be one or two. It cannot be zero, because a null command
 is simply ignored. Parsing the command includes matching its words against
 game's vocabulary. If all is well, ARG1 becomes a pointer to the first word
 of the command and ARG2 becomes a pointer to the second one – or, if
 only one word is supplied, ARG2 is set to zero. If either of the supplied
 words cannot be matched, the corresponding ARG variable is set to a negative
 value indicating the kind of failure involved. In this simple implementation
 we won't bother with details and simply report parsing failure of some kind.

 The conditional directive IFEQ checks for equality of its two arguments,
 while IFLT checks whether the value if the first argument is smaller than
 that of the second one. Such conditional statements can be joined by means
 of AND and OR directives into compound ones. The joint effect is
 conditional execution of any subsequent code up to the matching FIN
 directive.

 One unusual aspect of A-code should be noted here. Compound IF statements
 are parsed on the "as-you-go" basis. Or to put it otherwise, AND
 and OR have the same precedence and compound IFs are processed in the order
 in which they are given. Thus the above triple IF will report a failure
 either if a two word command is supplied and the second word cannot be
 parsed or the first word cannot be parsed (regardless of the number
 of words supplied).

Generalised error handling

 Here is that BAIL.OUT procedure for handling general errors. I'll use it to
 show two distinct ways of embedding player command words in the game's
 responses.

proc bail.out
 local qualifier # Local variable initialised to zero
 ifeq status, 1 # If a single word command given
 ifflag arg1, object # If that word is an object name
 ifnear arg1
 else
 quip "There is no # here!", arg1
 fin
 else
 set qualifier, 1 # The word is not an object name, assume verb
 fin
 quip "You need to say what you want to [do with the /]{arg1}.", qualifier
 fin
 quip "You can't do that!" # Generic no can do

Used as other than a major directive for declaring objects, OBJECT is an
automatically maintained entity flag, which is true for objects (or variables
pointing at objects) and false otherwise.

 If the supplied word refers to an object and the object is not nearby (not
 carried and not at the current location), the QUIP directive will say so.
 The # sign in that message is a word holder, which gets replaced by the word
 pointed at by the ARG1 variable.

 If the object referred to is present or the supplied word is not an object,
 we want to say that not enough information has been given. That response is
 very similar in either case, so I used the same meassge with an embedded
 switch, which is qualified by the QUALIFIER variable. The command word is,
 in this case, echoed via the {} construct, which gets replaced by
 the text (if any) with the entity pointed by the variable name.

If code execution continues past that second FIN, it means that the command
being processed had more than one word (otherwise it would have been handled
by one of the preceding QUIPs). That being so, a very generic "don't
understand" will do the job.

Location-specific code

 Now for the game code specific to game's locations. This is declared using
 the major directive AT. Yes, it could have been defined as a part of
 location definitions, but that's not how Dave Platt structured it. If
 preferred, individual AT code definitions can be placed immediately after
 the corresponding PLACE definition. Conventionally, though, all PLACE
 definitions are grouped together and so do all AT code definitions.

 In the foyer, the player can go south or west, attempt to move north or
 east, look around and attempt to drop the cloak. However, trying to move in
 a direction in which there are no exits is handled generically by the
 error handling REPEAT section, so only legal exits need to be catered for.
 Similarly, looking around and dropping things are generally not location
 specific, so are better left to verb-associated code to handle later. That's
 not to say that we can't intercept such actions at location-specific code,
 if more convenient.

at foyer
 move south, bar
 move west, cloakroom
 respond north "You've only just arrived, and besides, the weather outside
 seems to be getting worse."

 The MOVE opcode is a conditional version of GOTO. It takes a variable number
 of arguments, of which the last one is the location to move the player to,
 if the last player command contained one of the words listed before the
 location name.

 The cloakroom code is self-explanatory. Again, other actions will be handled
 by code specific to individual verbs. The bar is a little bit more
 complicated.

at cloakroom
 move east, foyer
at bar
 move north, foyer
 ifloc cloak, cloakroom
 else # The cloak is not in the cloakroom
 sub message, 1 # Count attempted actions in the dark
 quip "Blundering around in the dark isn't a good idea!"
 fin

 As one might expect, the IFLOC directive checks whether its first argument
 (which must be an object or a variable pointing at an object) is in one of
 locations listed by the rest of the directives arguments. In this case we
 want to do something when the cloak is not in the cloakroom. This is
 done by using the ELSE directive which executes code if the IF test returns
 false. As usual, a test can have separate code to be executed when the
 condition is satisfied and when it is not.

 What happens at the bar is that if the cloak is not at the cloakroom, the
 value of the object MESSAGE, which was set to 4 in the game's initialisation
 (the INIT section) is decremented (you will see why later). Because there is
 no action that can be performed in the dark bar, it makes sense to ignore
 the player's command and abort the REPEAT loop with a warning message about
 blundering in the dark.

Verb-specific code

 All that is left now is to define actions associated with individual verbs.
 The major directive ACTION is used to define code associated with a
 particular vocabulary word. Let's start with INVENTORY.

action inventory
 local optr # Local variable which will be used as a pointer to objects
 local count # Counts listed objects, automatically initialised to zero
 itobj optr, inhand # Loop through objects in player's inventory
 say optr # Show object's description
 add count, 1 # Increment count of listed objects
 fin
 ifeq count, 0 # If nothing listed, ...
 say "You are not carrying anything." # ... say empty-handed
 fin
 quit # Command fully handled, so terminate the REPEAT loop

We have already met local declarations and comments should make the that
code quite self-explanatory.

 Having tackled INVENTORY, we'll proceed with TAKE, which normally applies
 only to objects, but it is traditional to code also for TAKE INVENTORY.
 That's not a problem, since A-code makes no fundamental distinction between
 verbs and nouns in handling player commands. So INVENTORY can be used as
 either.

action take inventory
 call inventory # Execute code associated with the INVENTORY command

 The ACTION directive takes one or two arguments. The first is the vocabulary
 word with which subsequent code is to be associated. The second argument is
 optional. If it is present, then the subsequent code will be executed only
 if the specified word also features in the player's command. (NB, I've dealt
 with INVENTORY before TAKE INVENTORY but that was just for clarity of
 exposition.)

 Just like INIT and REPEAT (and also AT and PROC) there can be multiple
 ACTION sections for a given verb. The only object that can be picked up in
 this game is the cloak, so there is no need for generic ACTION TAKE –
 any other attempt to use TAKE will be handled by the last REPEAT section as
 an error.

action take cloak
 ifhere cloak # If cloak is at this location
 get cloak
 set cloak, 1 # The cloak is now carried
 set bar, 0 # and the bar is now dark
 quip "You [/pick/take] the cloak[/ up/ off the hook].", cloak
 fin

 The IFHERE conditional return true if the nominated object is at the same
 location as the player (which also means not in player's possession!). If the
 cloak is absent, the error handling REPEAT section will handle it.

 The response to success could have been just the generic "Taken" or similar,
 But I cannot resist showing of the feature of A-code which really caught my
 eye when I first encountered the language. The cloak has three states:
 0 if it is carried/worn, 1 if it is lying on the floor and 2 if it is
 hanging on the hook. The QUIP directive will only be executed if the state is
 1 or 2 and will automatically construct the appropriate response.

 The DROP action is very similar:

action drop cloak
 ifhave cloak # True only if the player has the cloak
 ifat cloakroom # True only if player is at cloakroom
 drop cloak # Move the cloak from player's inventory to cloakroom
 set cloak, 1 # It is now lying on the floor
 set bar, 1 # The bar is now lit
 quip "You drop the cloak."
 fin
 quip "This is not a good place to leave your cloak."
 fin

 That handles all cases where the cloak is carried or worn by the player.
 Other possibilities are already covered by the general error handling in the
 last REPEAT section.

More actions

 By now you should have no problem following the below code for hanging
 the cloak. The only directive that needs explaining is IFNEAR CLOAK, which
 tests for the cloak being present, whether or not it is carried by the
 player. IFNEAR is a shorthand for IFHAVE followed by OR followed by IFHERE.

action hang cloak
 ifnear cloak
 ifat cloakroom # True only if the player is at the cloakroom
 ifeq cloak, 2 # Already hanging -- nothing to do
 quip "It is already hanging on the hook!"
 fin
 ifhave, cloak # True only if the cloak is in the players' possession
 drop cloak # Make sure it is not carried
 fin
 set hook, 1 # Include the cloak in the hook's description
 set cloak, 2 # Set the cloak to have no description
 set bar, 1 # Bar is now lit
 quip "You hang the cloak on the hook."
 fin
 fin

 That leaves just two more actions to be defined – READ and LOOK:

action read
 ifeq status, 1 # Player said READ - we'll default to READ MESSAGE
 or
 ifkey message # Player actually said READ MESSAGE
 and
 ifat bar #Player is at the bar
 and
 ifeq bar, 1 # If the bar is lit
 say message # "Lost" or "won", depends on the message's value
 stop
 fin

 Recall the as-you-go parsing of compound IFs. The above one says that if the
 player said READ or READ MESSAGE, and is at the bar, and the bar is lit then
 the message is displayed and the game terminated. Recall also that the value
 of message was originally set to 4 and decremented any time the player did
 something in darkness other than leaving the bar. The message description is
 a text switch and will give the "you win" win description for
 values 1 through 4, and the "you lose" one for message values of
 zero or less.

 Finally, LOOK. If no object is given, it just needs to call the
 DESCRIBE.HERE procedure, which we have already constructed for use by the
 REPEAT loop. If an object is nominated and is nearby (carried or just
 present) and the object in question is the message, that's already covered
 by the READ action – so just CALL READ. Otherwise DESCRIBE ARG2
 does the job.

action look
 ifeq status, 1
 call describe.here # The procedure does not QUIT...
 quit # ... so QUIT explicitly
 fin
 ifnear arg2
 ifkey message # If the object to be describe is the message...
 call read # ... just call the code for READ.
 fin
 describe arg2 # Otherwise give long object description
 quit
 fin

An that's it. Well, sort of...

Finishing it off

 What we have constructed so far in this tutorial is a full working code of
 the "Cloak of Darkness" nano-adventure, but any self-respecting game
 should carry some additional header information, which must come before
 anything else, such as

name Cloak of Darkness
version Tutorial.1.0
author Mike Arnautov
date 24 Feb 2024
style 12

 All of these five header lines are optional and can occur in any order, but
 all must come before any other non-comment lines. The information they
 supply is stored in the games executable and can be displayed by running it
 with the command option -v (or /v for DOS/Windows). With the exception of
 the STYLE directive they have no other function. The STYLE line tells the
 acdc translator which major version of the A-code language is used by
 the game. It defaults to the current version (style 12).

 And with that header, the game is complete. For your convenience, here is the final version, exactly as constructed
 in this tutorial. I've just added some comment line separators to enhance
 readability.

 As for converting this code into a playeable executable, please see a separate document explaining how
 to do that. The simplest way is available if you have access to the bash
 command shell and have downloaded the
 current A-code tarball, in which case you can use the advbld
 script to do it for you – see the advbld
 documentation.

Cloak of Darkness tutorial source code
#
name Cloak of Darkness
version Tutorial.1.0
author Mike Arnautov
date 24 Feb 2024
style 12
#--
text YOU.ARRIVE
 The Cloak of Darkness

 Hurrying through the rain-swept November night, you're glad
 to see the bright lights of the Opera House. It's surprising
 that there aren't more people about but, hey, what do you
 expect in a cheap demo game...?

#--
Game specification mandates just the four cardinal directions
verb NORTH
verb EAST
verb SOUTH
verb WEST
#
verb GET, TAKE # Both the player and game code can use these interchangeably
verb INVENTORY
verb DROP
verb READ # For reading the message in the bar room
verb HANG # To hang the cloak on the hook
verb LOOK
verb QUIT # Not in the spec, but every game should allow quitting
#
noise THE, THAT, VELVET, GO # Player command words to be ignored
#--
object HOOK
 %A small brass hook is screwed to one wall.
 &It is just a small brass hook[/ with a cloak hanging on it].
#--
object CLOAK
 A velvet cloak[(worn)/]
 %A black velvet cloak [/lies on the floor/hangs on the hook].
 &It is a handsome cloak, of velvet trimmed with satin, and slightly
 spattered with raindrops. Its blackness is so deep that it
 almost seems to suck light from the room.
#--
object MESSAGE
 The message[has been carelessly trampled, making it difficult to read.
 You can just distinguish the words/, neatly marked in the sawdust,
 reads]...

 +YOU HAVE [LOST/WON] !!!
#--
place FOYER
 You are standing in a spacious hall, splendidly decorated in red
 and gold, with glittering chandeliers overhead. The entrance from
 the street is to the north, and there are doorways south and west.
place CLOAKROOM
 The walls of this small room were clearly once lined with hooks,
 though now only one remains. The exit is a door to the east.
place BAR
 [It is too dark here to see anything!/The bar, much rougher than
 you'd have guessed after the opulence of the foyer to the north,
 is completely empty.

 A message is scratched in the sawdust on the floor.]
#--
init
 goto foyer # Move the player to the start location
 apport cloak, inhand # Give him the cloak
 apport hook, cloakroom # Put the hook where it belongs
 set message, 4 # Limits the number of moves in the bar
 say you.arrive
#--
repeat
 ifflag status, moved # Has the player moved?
 call describe.here # If so describe their new location
 fin
#--
flags variable
 MOVED # Optional STATUS variable flag, maintained by the kernel
#--
proc DESCRIBE.HERE
 local optr # Local pointer to objects
 say here # show description of current location
 itobj optr, here # Loop through objects at this location
 say optr # Show such objects
 fin # Loop terminator
#--
repeat
 set status, no.amatch # Suppress approximate matching of command words
 input # Get player's next command
 ifeq status, 2
 and
 iflt arg2, 0 # Can't find 2nd command word in the vocabulary
 or
 iflt arg1, 0 # Can't find 1st command word in the vocabulary
 quip "Pardon?" # Command parse failure -- abort the main loop
 fin
#--
repeat
 ifkey quit # If the word QUIT occurs in the command
 say "As you wish."
 stop # Exit the game
 fin
 call here # Execute code, if any, associated with this location
 respond north, east, south, west, "There is no such exit here."
 call arg1 # Handle player command
 call bail.out # Command not handled - report an error
#--
proc bail.out
 local qualifier # Local varaible initialised to zero
 ifeq status, 1 # If a single word command given
 ifflag arg1, object # If that word is an object name
 ifnear arg1
 else
 quip "There is no # here!", arg1
 fin
 else
 set qualifier, 1 # The word is not an object name, assume verb
 fin
 quip "You need to say what you want to [do with the /]{arg1}.", qualifier
 fin
 quip "You can't do that!" # Generic no can do
#--
at foyer
 move south, bar
 move west, cloakroom
 respond north "You've only just arrived, and besides, the weather outside
 seems to be getting worse."
#--
at cloakroom
 move east, foyer
at bar
 move north, foyer
 ifloc cloak, cloakroom
 else # The cloak is not in the cloakroom
 sub message, 1 # Count attempted actions in the dark
 quip "Blundering around in the dark isn't a good idea!"
 fin
#--
action inventory
 local optr # Local variable which will be used as a pointer to objects
 local count # Counts listed objects, automatically initialised to zero
 itobj optr, inhand # Loop through objects in player's inventory
 say optr # Show object's description
 add count, 1 # Increment count of listed objects
 fin
 ifeq count, 0 # If nothing listed, ...
 say "You are not carrying anything." # ... say empty-handed
 fin
 quit # Command fully handled, so terminate the REPEAT loop
#--
action take inventory
 call inventory # Execute code associated with the INVENTORY command
#--
action take cloak
 ifhere cloak # If cloak is at this location
 get cloak
 set cloak, 1 # The cloak is now carried
 set bar, 0 # and the bar is now dark
 quip "You [/pick/take] the cloak[/ up/ off the hook].", cloak
 fin
#--
action drop cloak
 ifhave cloak # True only if the player has the cloak
 ifat cloakroom # True only if player is at cloakroom
 drop cloak # Move the cloak from player's inventory to cloakroom
 set cloak, 1 # It is now lying on the floor
 set bar, 1 # The bar is now lit
 quip "You drop the cloak."
 fin
 quip "This is not a good place to leave your cloak."
 fin
#--
action hang cloak
 ifnear cloak
 ifat cloakroom # True only if the player is at the cloakroom
 ifeq cloak, 2 # Already hanging -- nothing to do
 quip "It is already hanging on the hook!"
 fin
 ifhave, cloak # True only if the cloak is in the players' possession
 drop cloak # Make sure it is not carried
 fin
 set hook, 1 # Include the cloak in the hook's description
 set cloak, 2 # Set the cloak to have no description
 set bar, 1 # Bar is now lit
 quip "You hang the cloak on the hook."
 fin
 fin
#--
action read
 ifeq status, 1 # Player said READ - we'll default to READ MESSAGE
 or
 ifkey message # Player actually said READ MESSAGE
 and
 ifat bar #Player is at the bar
 and
 ifeq bar, 1 # If the bar is lit
 say message # "Lost" or "won", depends on the message's value
 stop
 fin
#--
action look
 ifeq status, 1
 call describe.here # The procedure does not QUIT...
 quit # ... so QUIT explicitly
 fin
 ifnear arg2
 ifkey message # If the object to be describe is the message...
 call read # ... just call the code for READ.
 fin
 describe arg2 # Otherwise give long object description
 quit
 fin
#--

cover.png
A-code

Tutorial

Mike Arnautov

mipmip.org/acode

version: 2025-May-06

