A-code

Tutorial

Mike Arnautov

mipmip.org/acode

version: 2025-May-06

Table of Contents

This tutorial will guide you through a basic A-code implementation of
Roger Firth's nano-adventure "Cloak of Darkness".

. Cloak of Darkness specification
. A-code Program Structure
. Player Vocabulary,
. Objects
. Places (a.k.a. L.ocations or Rooms)
. Game Initialisation
. The Main L.oop — House-Keeping
. Declaring Named Procedures
9. The Main L.oop — Player Input
10. The Main L.oop — Game's Response
11. General Error Handling
12. Location-Specific Code
13. Verb-Specific Code
14. Remaining Actions
15. Finishing It Off
16. Game's Complete A-Code Source

O Ul WN -

clbr://internal.invalid/book/tutorial1_010.html

Game Specification

Here is Roger Firth's summary specification of Cloak of Darkness:

The Foyer of the Opera House is where the game begins. This empty
room has doors to the south and west, also an unusable exit to the
north. There is nobody else around.

The Bar lies south of the Foyer, and is initially unlit. Trying to do
anything other than return northwards results in a warning message
about disturbing things in the dark.

On the wall of the Cloakroom, to the west of the Foyer, is fixed a small
brass hook.

Taking an inventory of possessions reveals that the player is wearing a
black velvet cloak which, upon examination, is found to be light-
absorbent. The player can drop the cloak on the floor of the Cloakroom
or, better, put it on the hook.

Returning to the Bar without the cloak reveals that the room is now lit.
A message is scratched in the sawdust on the floor.

The message reads either "You have won" or "You have lost",
depending on how much it was disturbed by the player while the room
was dark.

The act of reading the message ends the game.

This implementation of the game also will use non-mandatory object and
place description sugegsted by Roger.

Style and Terminology

A few words on style and terminology.

Except in text messages to be displayed to players, A-code is
completely case insensitive. As a personal convention, I use lower case
in actual A-code code, except in declarations, where names of entites
being declared are in upper case.

When explaining code, I will be presenting code snippets in upper case
in order to avoid excessive quoting.

All declarative keywords (a.k.a. major directives) must start in column
1 (i.e. with no leadin spaces or tabs). A declaration is terminated by
another non-comment) line starting in colum 1, or by the end of a file.
A-code opcodes (a.k.a. minor directives) as well as any lines in
declaration bodies must have at least one blank or tab preceding them.
Beyond that, A-code does not care about levels of indentation.
Comments are permitted everywhere, except within text declarations.
The start of a comment is signalled by a hash (#) sign and A-code
simply ignores the sign, any preceding blanks or tabs, and the rest of
the line. (NB: Dave platt's version of A-code had a different comment
convention.)

Once you have an acode source file, you will want to convert it into a game
executable. Other than an ANSI C compier, you will find everything
necessary in the acode-12.91.tgz tarball. If you can use the advbld bash
script, just give it the name of the source file and it will do the rest. If you
cannot use a bash script, you'll need to do it "manually". First run the acdc
translator, giving it the source file name or pathname as an argument. Then
use an ANSI C compiler on resulting .c and .h files together with the three
kernel files: adv00.c advO1.c and advO0.h.

clbr://internal.invalid/book/acode-12.91.tgz

Program structure

The game starts with a one-off announcement of the player's arrival at the
Opera House. For now, we'll skip the actual arrival message and use the
traditional "Hello world!" instead.
init

say "Hello world!"

repeat
stop

That's a fully functional A-code program, which will print its message and
stop. The INIT and REPEAT code sections are mandatory. Either or both
can be empty, though this would not make sense in any real game.

INIT code sections are used for game initialisation. If there are several, they
get executed in the order or their declaration. The REPEAT sections (also
executed in the order of their declaration) constitute the main loop of the
game. So INIT sections get executed once and then the game repeatedly
executes the REPEAT sections in their order, until the stop directive is
encountered.

The actual initial message for our game is a multi-line one, with some lines
being blank. Nevertheless, we could simply substitute it for "Hello world!"
in the program so far:

init
Say n
The Cloak of Darkness
Hurrying through the rain-swept November night, you're glad
to see the bright lights of the Opera House. It's surprising
that there aren't more people about but, hey, what do you
expect in a cheap demo game...?
repeat
stop

Notice that all text lines are preceded by some blanks — only major
directives start at the beginning of a line. Any such leading blanks are
ignored and successive non-blank lines are interpreted as a single line to be

wrapped at runtime as appropriate. Within text definitions, blank lines can
be completely blank (no spaces or tabs preceding end of line).

However, I reckon this use of multi-line text is untidy and makes code less
readable. So I'll use a named text instead.

text YOU.ARRIVE
The Cloak of Darkness

Hurrying through the rain-swept November night, you're glad
to see the bright lights of the Opera House. It's surprising
that there aren't more people about but, hey, what do you
expect in a cheap demo game...?

init

say you.arrive
repeat

stop

Note that no double quotes are used in defining named texts. The text is
simply terminated by the next declaration (or end of file).

Player vocabulary

The game specification does not tell us what actions the player must be able
to perform. This being a minimalist implementation, we'll declare only the
bare essentials. For example the player is originally wearing the cloak; do
they need to REMOVE it before dropping it or hanging it on the hook? No.
They clearly need to be able to pick the cloak up if they'd dropped it, but
there no need to allow them to wear it again — so no WEAR either. Only
actions clearly implied by the specification will be catered for.

While A-code player command interface is at present restricted to the
ancient verb/noun structure (no adjectives, prepositions or instruments), it
also permits apparently complex commands, e.g. "drop everything except
the ring and the orb then go out". This is achieved by the parser reducing
such complex command to a series of one or two word simple ones.
However, in constructing a game one can also cheat: in so far as adjectives
are not necessary to identify objects, they can be simply ignored.

All vocabulary words are automatically abbreviable to the smallest
unambiguous length. By default, the A-code parser will also do
approximate, one-typo matching of player's command words against the
vocabulary, but in this tutorial we'll be switching approximate matching off,
in order to avoid complications of dealing with ambiguous typos and such-
like.

Note that in the absence of any clashing vocabulary words (including
objects, which I have not tackled yet), the four direction commands will be
automatically abbreviable to their first letter.

So, verbs available to the player:

Game specification mandates just the four cardinal directions

verb NORTH

verb EAST

verb SOUTH

verb WEST

#

verb GET, TAKE # Both the player and game code can use these interchangeably
verb INVENTORY

verb DROP

verb READ # For reading the message in the bar room

verb HANG # To hang the cloak on the hook

verb LOOK

verb QUIT # Not in the spec, but every game should allow quitting
#

noise THE, THAT, VELVET, GO # Player command words to be ignored

The NOISE definition tells the game which words in player's command are
to be completely ignored. Thus GET THE VELVET CLOAK will be parsed
as GET CLOAK, despite the parser's limitation to verb/noun commands.
Similarly GO WEST will become simply WEST, which somewhat
simplifies game's code.

I sneaked in another feature here: comments. Comments are delimited by
the hash sign. Full-line comments (with the # sign being the line's first
character) are permitted everywhere — even within message or description
texts. They are simply ignored. In-line comments are not allowed in texts
(be it game's messages or object/place descriptions).

Objects

The vocabulary definitions we have so far contain only verbs, but the game
will obviously need nouns as well. These are mostly added via object and
place definitions. So here's the first object definition:

object HOOK
%A small brass hook is screwed to one wall.
&It is just a small brass hook[/ with a cloak hanging on it].

This defines an object and names it HOOK. By default, object names are
automatically added to the player's vocabulary, so that names can be used
(synonymously, if there is more than one) both by the player and by game's
code. If for whatever reason some object name is to be excluded from the
vocabulary, this is achieved by prefixing the name with a minus sign.

An OBJECT declaration line is optionally followed by up to three kinds of
object description: an inventory one, a long "here-is" one and a detailed
one. The first two are displayed by the SAY directive (we'll get to it later
on), depending on whether the object is carried by the player or is just
present in the current location. The detailed description can be shown by the
DESCRIBE directive, which is used to show the most detailed description
available.

In this case the hook can never be picked up by the player, so its definition
omits the inventory description, which would have consisted of line(s) of
text immediately following the OBJECT declaration line. The "here-is"
description starts with a line prefixed with the % sign and can also consist
of several text lines. Finally, the detailed description is signalled by the &
sign at the beginning of a line and can also feature additional lines.

In the hook's case, the detailed description contains a "text switch", which
will display different text fragments depending on the internal state of the
object. (All declarative features of A-code texts are covered at some length
by relevant section of A-code documentation). If the hook's state has its
default value of zero (or for that matter if it is negative), the description will
read "It is just a small brass hook.". If it's internal state is 1 (or higher), the

clbr://internal.invalid/acode/doc/acode-texts.html

description will include the cloak. We could give these two values symbolic
names for code clarity, but I'll leave that for an advanced tutorial.

Now for the cloak...

object CLOAK
A velvet cloak[(worn)/]
%A black velvet cloak [/lies on the floor/hangs on the hook].
&It is a handsome cloak, of velvet trimmed with satin, and slightly
spattered with raindrops. Its blackness is so deep that it
almost seems to suck light from the room.

This object does have an inventory description, which depends on the
object's state, as does the long, "here-is" description. The cloak will have
three states, which again could have symbolic names: worn, not worn (can
be either carried or lying on the floor) and hanging on the hook.

Finally, the specification says that there are three objects altogether, the
message in the bar being the third one. Here it is, but I'll postpone its
explanation until later. For the moment, just note that it has just one
description with a couple of text switches.

object MESSAGE
The message[has been carelessly trampled, making it difficult to read.
You can just distinguish the words/, neatly marked in the sawdust,
reads]...

+YOU HAVE [LOST/WON] !!!

That's it for objects. Next come locations.

Game initialisation

A full size A-code game can have quite large initialisation sections, setting
up correct attributes for places, objects and texts. You may wonder why this
is being done at run-time, rather than statically, as those entities are being
declared. The reason is partly history, but there is also a much stronger
reason, why this unusual arrangement persists: it is extremely helpful in
guaranteeing upward compatibility of saved games, which, if done
correctly, permits game players (and testers!) to upgrade the game withuot
invalidating any existing game saves.

In this minimalist implementation, though, there are no such attributes to set
and this the initialisation code is sweet and short. Here it is, replacing the
earlier suggested version:

init
goto foyer # Move the player to the start location
apport cloak, inhand # Give him the cloak
apport hook, cloakroom # Put the hook where it belongs
set message, 4 # Limits the number of moves in the bar

say you.arrive

The minor directive GOTO places the player inthe FOYER.

The first APPORT moves the object CLOAK to the location INHAND, an
automatically defined location for objects held or worn by the player. The
second APPORT puts the hook into the cloakroom. (Use of the word
"apport" is Platt's little joke — it means transporing an object by occult
means, without material agency.)

Note, by the way, that all value-bearing entities (objects, places, variables
and even some texts) are automatically initialised with value of zero, which
for the cloak happens to correspond to being worn by the player.

Finally, the SAY directive displays the previously defined named text. This
directive is extremely versitile and cen be applied to any entity (text, object,
place, vocabulary word) assiciated with text. It can also be applied to
variables which point to any such entity. We'll see use of pointer variables
later.

The main loop — house-keeping

After initialisation comes the main program loop. This can be thought of as
consisting of three parts. First comes the general per-turn house-keeping
(e.g. determining whether the current location is lit, whether the player is
getting thirsty, whether there is some NPC action to be announced...).
Secondly, the player's input is obtained and parsed. Thirdly player
command is responded to.

For clarity, I prefer to separate them into individual REPEAT sections,
which get executed in the order of their declaration. In this game, there isn't
much house-keeping required:

repeat
ifflag status, moved # Has the player moved?
call describe.here # If so describe their new location
fin

Brief as it is, this section packs a lot of new stuff. Firstly, STATUS is a
global variable. It must be present in any A-code game, so if not declared
explicitly in the game's source, it is declared automatically by the acdc
translator. We shall meet its other uses further on, but for the moment it is
enough to know that like all variables (global or local), in addition to
carrying a value, it has a set of binary flags associated with it. In this
particular case, the relevant flag is called MOVED. This flag is optional — if
declared by the game, it is set by the kernel to true if the last simple
command resulted in a change of location and to false otherwise. We
haven's actually declared that flag yet, but that's all right — A-code allows
you to use entities before their declaration. So let's declare it now:

flags variable
MOVED # Optional STATUS variable flag, maintained by the kernel

This declares a flag which can be used with variables (but not places or
objects).

Back to house-keeping... As you may guess, the IFFLAG directive in the
above code snippet checks whether the MOVED flag of the STATUS
variable is set to true and if so, causes execution of the following code, up

to the corresponding FIN directive closing the conditional code block.
(Block's indentation is irrelevant and only used to enhance code
readability.)

In this case, the conditional code does nothing more than call a procedure,
(that is a named chunk of code) called DESCRIBE.HERE. As the name
suggests, it will describe the current location. Let's attend to it straight
away.

Named procedure declaration

Here's that procedure for describing locations:

proc DESCRIBE.HERE

local optr # Local pointer to objects

say here # Show description of current location

itobj optr, here # Loop through objects at this location
say optr # Show such objects

fin # Loop terminator

Once again, this brief declaration introduces several important concepts.

The LOCAL OPTR statement declares a variable called OPTR, which is
local to this code section (i.e. to this procedure). All other variables
(whether declared explicitly by the VARIABLE major directive or are are
supplied automatically by the A-code kernel) are global in scope.
Declaration of local variables forms the sole exception to general rules in
that any LOCAL declaration lines must be placed at the very beginning of
the code section to which they apply.

I've called this variable OPTR because it will be used as a pointer to
objects. Pointers are just variables which happen to be referencing some
game entity (object, place, text, word or variable). In almost all cases, if a
variable containing a pointer value is used in some context where a game
entity is expected, the effect is as if the entity pointed to were used. So in
our case, the SAY directive will display the description of the player's
current location, as if that location was explicitly named as its argument.

The SAY HERE statement displays the description of the current location.
This is because HERE is an automatic variable, which is maintained by the
kernel and always point to the player's current location. (There is also the
companion automatic variable THERE, which always points to the player's
location prior to the last location change. We do not need it in this game.)

The ITOBJ directive iterates through game's objects, executing for each one
the following code, up to the matching FIN statement. It can be qualified by
a location (as in this case) and/or by an object flag or flags, in which case

any non-matching objects are ignored. Thus ITOBJ OPTR, HERE will only
consider objects in the current location.

As you may have gathered from the above, SAY OPTR will give the
description of the object pointed to. It will not be the inventory description,
which would be automatically used if the object in question were carried by
the player. And it will not be the detailed description, because that is only
shown by the DESCRIBE directive.

The main loop — player input

Back to the main loop... It is time to obtain and parse theplayer's command.

repeat
set status, no.amatch # Suppress approximate matching of command words
input # Get and parse player's command
ifeq status, 2
and

iflt arg2, 0 # Can't find 2nd command word in the vocabulary

or
iflt argl, © # Can't find 1st command word in the vocabulary

quip "Pardon?" # Command parse failure -- abort the main loop
fin

The INPUT directive considers the next simple command (a complex one
may have been previously given). If the previous command (simple or
complex) has been fully processed, it will first prompt the player for a new
one. It will parse the verb/noun command thus obtained and will set three
automatic variables: STATUS, ARG1 and ARG2.

The STATUS variable gets set to the number of words in the command
being parsed, which can be one or two. It cannot be zero, because a null
command is simply ignored. Parsing the command includes matching its
words against game's vocabulary. If all is well, ARG1 becomes a pointer to
the first word of the command and ARG2 becomes a pointer to the second
one — or, if only one word is supplied, ARG?2 is set to zero. If either of the
supplied words cannot be matched, the corresponding ARG variable is set
to a negative value indicating the kind of failure involved. In this simple
implementation we won't bother with details and simply report parsing
failure of some kind.

The conditional directive IFEQ checks for equality of its two arguments,
while IFLT checks whether the value if the first argument is smaller than
that of the second one. Such conditional statements can be joined by means
of AND and OR directives into compound ones. The joint effect is
conditional execution of any subsequent code up to the matching FIN
directive.

One unusual aspect of A-code should be noted here. Compound IF
statements are parsed on the "as-you-go" basis. Or to put it otherwise, AND
and OR have the same precedence and compound IFs are processed in the
order in which they are given. Thus the above triple IF will report a failure
either if a two word command is supplied and the second word cannot be
parsed or the first word cannot be parsed (regardless of the number of
words supplied).

Generalised error handling

Here is that BAIL.OUT procedure for handling general errors. I'll use it to
show two distinct ways of embedding player command words in the game's
responses.

proc bail.out

local qualifier # Local variable initialised to zero
ifeq status, 1 # If a single word command given
ifflag argl, object # If that word is an object name
ifnear argil
else
quip "There is no # here!", argl
fin
else
set qualifier, 1 # The word is not an object name, assume verb
fin
quip "You need to say what you want to [do with the /]{argl1}.", qualifier
fin
quip "You can't do that!" # Generic no can do

Used as other than a major directive for declaring objects, OBJECT is an
automatically maintained entity flag, which is true for objects (or variables
pointing at objects) and false otherwise.

If the supplied word refers to an object and the object is not nearby (not
carried and not at the current location), the QUIP directive will say so. The
sign in that message is a word holder, which gets replaced by the word
pointed at by the ARG1 variable.

If the object referred to is present or the supplied word is not an object, we
want to say that not enough information has been given. That response is
very similar in either case, so I used the same meassge with an embedded
switch, which is qualified by the QUALIFIER variable. The command word
is, in this case, echoed via the {} construct, which gets replaced by the text
(if any) with the entity pointed by the variable name.

If code execution continues past that second FIN, it means that the
command being processed had more than one word (otherwise it would
have been handled by one of the preceding QUIPs). That being so, a very
generic "don't understand" will do the job.

Location-specific code

Now for the game code specific to game's locations. This is declared using
the major directive AT. Yes, it could have been defined as a part of location
definitions, but that's not how Dave Platt structured it. If preferred,
individual AT code definitions can be placed immediately after the
corresponding PLACE definition. Conventionally, though, all PLACE
definitions are grouped together and so do all AT code definitions.

In the foyer, the player can go south or west, attempt to move north or east,
look around and attempt to drop the cloak. However, trying to move in a
direction in which there are no exits is handled generically by the error
handling REPEAT section, so only legal exits need to be catered for.
Similarly, looking around and dropping things are generally not location
specific, so are better left to verb-associated code to handle later. That's not
to say that we can't intercept such actions at location-specific code, if more
convenient.

at foyer
move south, bar
move west, cloakroom
respond north "You've only just arrived, and besides, the weather outside
seems to be getting worse."

The MOVE opcode is a conditional version of GOTO. It takes a variable
number of arguments, of which the last one is the location to move the
player to, if the last player command contained one of the words listed
before the location name.

The cloakroom code is self-explanatory. Again, other actions will be
handled by code specific to individual verbs. The bar is a little bit more
complicated.

at cloakroom
move east, foyer
at bar
move north, foyer
ifloc cloak, cloakroom
else # The cloak is not in the cloakroom
sub message, 1 # Count attempted actions in the dark
quip "Blundering around in the dark isn't a good idea!"
fin

As one might expect, the IFLOC directive checks whether its first argument
(which must be an object or a variable pointing at an object) is in one of
locations listed by the rest of the directives arguments. In this case we want
to do something when the cloak is not in the cloakroom. This is done by
using the ELSE directive which executes code if the IF test returns false. As
usual, a test can have separate code to be executed when the condition is
satisfied and when it is not.

What happens at the bar is that if the cloak is not at the cloakroom, the
value of the object MESSAGE, which was set to 4 in the game's
initialisation (the INIT section) is decremented (you will see why later).
Because there is no action that can be performed in the dark bar, it makes
sense to ignore the player's command and abort the REPEAT loop with a
warning message about blundering in the dark.

Verb-specific code

All that is left now is to define actions associated with individual verbs. The
major directive ACTION is used to define code associated with a particular
vocabulary word. Let's start with INVENTORY.

action inventory
local optr # Local variable which will be used as a pointer to objects
local count # Counts listed objects, automatically initialised to zero
itobj optr, inhand # Loop through objects in player's inventory
say optr # Show object's description
add count, 1 # Increment count of listed objects
fin
ifeq count, 0 # If nothing listed, ...
say "You are not carrying anything." # ... say empty-handed
fin
quit # Command fully handled, so terminate the REPEAT loop

We have already met local declarations and comments should make the that
code quite self-explanatory.

Having tackled INVENTORY, we'll proceed with TAKE, which normally
applies only to objects, but it is traditional to code also for TAKE
INVENTORY. That's not a problem, since A-code makes no fundamental
distinction between verbs and nouns in handling player commands. So
INVENTORY can be used as either.

action take inventory
call inventory # Execute code associated with the INVENTORY command

The ACTION directive takes one or two arguments. The first is the
vocabulary word with which subsequent code is to be associated. The
second argument is optional. If it is present, then the subsequent code will
be executed only if the specified word also features in the player's
command. (NB, I've dealt with INVENTORY before TAKE INVENTORY
but that was just for clarity of exposition.)

Just like INIT and REPEAT (and also AT and PROC) there can be multiple
ACTION sections for a given verb. The only object that can be picked up in
this game is the cloak, so there is no need for generic ACTION TAKE — any

other attempt to use TAKE will be handled by the last REPEAT section as
an error.

action take cloak
ifhere cloak # If cloak is at this location
get cloak
set cloak, 1 # The cloak is now carried
set bar, 0 # and the bar is now dark
quip "You [/pick/take] the cloak[/ up/ off the hook].", cloak
fin

The IFHERE conditional return true if the nominated object is at the same
location as the player (which also means not in player's possession!). If the
cloak is absent, the error handling REPEAT section will handle it.

The response to success could have been just the generic "Taken" or similar,
But I cannot resist showing of the feature of A-code which really caught my
eye when I first encountered the language. The cloak has three states: 0 if it
is carried/worn, 1 if it is lying on the floor and 2 if it is hanging on the
hook. The QUIP directive will only be executed if the state is 1 or 2 and
will automatically construct the appropriate response.

The DROP action is very similar:

action drop cloak
ifhave cloak # True only if the player has the cloak
ifat cloakroom # True only if player is at cloakroom
drop cloak # Move the cloak from player's inventory to cloakroom
set cloak, 1 # It is now lying on the floor
set bar, 1 # The bar is now lit
quip "You drop the cloak."
fin
quip "This is not a good place to leave your cloak."
fin

That handles all cases where the cloak is carried or worn by the player.
Other possibilities are already covered by the general error handling in the
last REPEAT section.

More actions

By now you should have no problem following the below code for hanging
the cloak. The only directive that needs explaining is [IFNEAR CLOAK,
which tests for the cloak being present, whether or not it is carried by the
player. IFNEAR is a shorthand for IFHAVE followed by OR followed by
IFHERE.

action hang cloak
ifnear cloak
ifat cloakroom # True only if the player is at the cloakroom
ifeq cloak, 2 # Already hanging -- nothing to do
quip "It is already hanging on the hook!"

fin
ifhave, cloak # True only if the cloak is in the players' possession
drop cloak # Make sure it is not carried
fin
set hook, 1 # Include the cloak in the hook's description
set cloak, 2 # Set the cloak to have no description
set bar, 1 # Bar is now 1lit
quip "You hang the cloak on the hook."
fin

fin
That leaves just two more actions to be defined - READ and LOOK:

action read

ifeq status, 1 # Player said READ - we'll default to READ MESSAGE
or

ifkey message # Player actually said READ MESSAGE
and

ifat bar #Player is at the bar
and

ifeq bar, 1 # If the bar is 1lit
say message # "Lost" or "won", depends on the message's value
stop

fin

Recall the as-you-go parsing of compound IFs. The above one says that if
the player said READ or READ MESSAGE, and is at the bar, and the bar is
lit then the message is displayed and the game terminated. Recall also that
the value of message was originally set to 4 and decremented any time the
player did something in darkness other than leaving the bar. The message
description is a text switch and will give the "you win" win description for
values 1 through 4, and the "you lose" one for message values of zero or
less.

Finally, LOOK. If no object is given, it just needs to call the
DESCRIBE.HERE procedure, which we have already constructed for use
by the REPEAT loop. If an object is nominated and is nearby (carried or
just present) and the object in question is the message, that's already
covered by the READ action — so just CALL READ. Otherwise
DESCRIBE ARG2 does the job.

action look
ifeq status, 1
call describe.here # The procedure does not QUIT...
quit # ... so QUIT explicitly
fin
ifnear arg2
ifkey message # If the object to be describe is the message...

call read # ... just call the code for READ.
fin
describe arg2 # Otherwise give long object description
quit
fin

An that's it. Well, sort of...

Finishing it off

What we have constructed so far in this tutorial is a full working code of the
"Cloak of Darkness" nano-adventure, but any self-respecting game should
carry some additional header information, which must come before
anything else, such as

name Cloak of Darkness
version Tutorial.1.0
author Mike Arnautov
date 24 Feb 2024

style 12

All of these five header lines are optional and can occur in any order, but all
must come before any other non-comment lines. The information they
supply is stored in the games executable and can be displayed by running it
with the command option -v (or /v for DOS/Windows). With the exception
of the STYLE directive they have no other function. The STYLE line tells
the acdc translator which major version of the A-code language is used by
the game. It defaults to the current version (style 12).

And with that header, the game is complete. For your convenience, here is
the final version, exactly as constructed in this tutorial. I've just added some
comment line separators to enhance readability.

As for converting this code into a playeable executable, please see a
separate document explaining how to do that. The simplest way is available
if you have access to the bash command shell and have downloaded the
current A-code tarball, in which case you can use the advbld script to do it
for you — see the advbld documentation.

clbr://internal.invalid/acode/doc/acode-a-build.html
clbr://internal.invalid/acode/doc/acode-a-build.html
clbr://internal.invalid/acode/acode-12.91.tgz
clbr://internal.invalid/acode/acode-12.91.tgz
clbr://internal.invalid/acode/doc/advbld.html

Cloak of Darkness tutorial source code
#

name Cloak of Darkness

version Tutorial.1.0

author Mike Arnautov

date 24 Feb 2024

style 12

text YOU.ARRIVE
The Cloak of Darkness

Hurrying through the rain-swept November night, you're glad
to see the bright lights of the Opera House. It's surprising
that there aren't more people about but, hey, what do you
expect in a cheap demo game...?

Game specification mandates just the four cardinal directions

verb NORTH

verb EAST

verb SOUTH

verb WEST

#

verb GET, TAKE # Both the player and game code can use these interchangeably
verb INVENTORY

verb DROP

verb READ # For reading the message in the bar room

verb HANG # To hang the cloak on the hook

verb LOOK

verb QUIT # Not in the spec, but every game should allow quitting
#

noise THE, THAT, VELVET, GO # Player command words to be ignored
e T

object HOOK
%A small brass hook is screwed to one wall.
&It is just a small brass hook[/ with a cloak hanging on it].

object CLOAK
A velvet cloak[(worn)/]
%A black velvet cloak [/lies on the floor/hangs on the hook].
&It is a handsome cloak, of velvet trimmed with satin, and slightly
spattered with raindrops. Its blackness is so deep that it
almost seems to suck light from the room.

object MESSAGE
The message[has been carelessly trampled, making it difficult to read.
You can just distinguish the words/, neatly marked in the sawdust,
reads]...

+YOU HAVE [LOST/WON] !!!

place FOYER
You are standing in a spacious hall, splendidly decorated in red
and gold, with glittering chandeliers overhead. The entrance from
the street is to the north, and there are doorways south and west.
place CLOAKROOM
The walls of this small room were clearly once lined with hooks,
though now only one remains. The exit is a door to the east.
place BAR
[It is too dark here to see anything!/The bar, much rougher than

you'd have guessed after the opulence of the foyer to the north,
is completely empty.

A message is scratched in the sawdust on the floor.]

e
init
goto foyer # Move the player to the start location
apport cloak, inhand # Give him the cloak
apport hook, cloakroom # Put the hook where it belongs
set message, 4 # Limits the number of moves in the bar
say you.arrive
- T e e S
repeat
ifflag status, moved # Has the player moved?
call describe.here # If so describe their new location
fin
e
flags variable
MOVED # Optional STATUS variable flag, maintained by the kernel
- T e e S
proc DESCRIBE.HERE
local optr # Local pointer to objects
say here # show description of current location
itobj optr, here # Loop through objects at this location
say optr # Show such objects
fin # Loop terminator
e T
repeat
set status, no.amatch # Suppress approximate matching of command words
input # Get player's next command
ifeq status, 2
and
iflt arg2, 0 # Can't find 2nd command word in the vocabulary
or
iflt argl, 0 # Can't find 1st command word in the vocabulary
quip "Pardon?" # Command parse failure -- abort the main loop
fin
g
repeat
ifkey quit # If the word QUIT occurs in the command
say "As you wish."
stop # Exit the game
fin
call here # Execute code, if any, associated with this location
respond north, east, south, west, "There is no such exit here."
call argl # Handle player command
call bail.out # Command not handled - report an error
- T e e S
proc bail.out
local qualifier # Local varaible initialised to zero
ifeq status, 1 # If a single word command given
ifflag argl, object # If that word is an object name
ifnear argl
else
quip "There is no # here!", argl
fin
else
set qualifier, 1 # The word is not an object name, assume verb
fin

quip "You need to say what you want to [do with the /]{argi1}.", qualifier
fin

quip "You can't do that!" # Generic no can do

g
at foyer
move south, bar
move west, cloakroom
respond north "You've only just arrived, and besides, the weather outside
seems to be getting worse."
- T e e S

at cloakroom
move east, foyer

at bar
move north, foyer
ifloc cloak, cloakroom

else # The cloak is not in the cloakroom
sub message, 1 # Count attempted actions in the dark
quip "Blundering around in the dark isn't a good idea!"

fin

action inventory
local optr # Local variable which will be used as a pointer to objects
local count # Counts listed objects, automatically initialised to zero
itobj optr, inhand # Loop through objects in player's inventory

say optr # Show object's description
add count, 1 # Increment count of listed objects
fin
ifeq count, 0 # If nothing listed,
say "You are not carrying anything." # ... say empty-handed
fin
quit # Command fully handled, so terminate the REPEAT loop
g
action take inventory
call inventory # Execute code associated with the INVENTORY command
e
action take cloak
ifhere cloak # If cloak is at this location
get cloak
set cloak, 1 # The cloak is now carried
set bar, 0 # and the bar is now dark
quip "You [/pick/take] the cloak[/ up/ off the hook].", cloak
fin
e
action drop cloak
ifhave cloak # True only if the player has the cloak
ifat cloakroom # True only if player is at cloakroom
drop cloak # Move the cloak from player's inventory to cloakroom
set cloak, 1 # It is now lying on the floor
set bar, 1 # The bar is now lit
quip "You drop the cloak."
fin
quip "This is not a good place to leave your cloak."
fin
- T e e S

action hang cloak
ifnear cloak
ifat cloakroom # True only if the player is at the cloakroom
ifeq cloak, 2 # Already hanging -- nothing to do
quip "It is already hanging on the hook!"

fin
ifhave, cloak # True only if the cloak is in the players' possession
drop cloak # Make sure it is not carried

fin

set hook, 1 # Include the cloak in the hook's description

set cloak, 2 # Set the cloak to have no description
set bar, 1 # Bar is now lit
quip "You hang the cloak on the hook."
fin
fin
e T
action read
ifeq status, 1 # Player said READ - we'll default to READ MESSAGE
or
ifkey message # Player actually said READ MESSAGE
and
ifat bar #Player is at the bar
and
ifeq bar, 1 # If the bar is 1lit
say message # "Lost" or "won", depends on the message's value
stop
fin
e T

action look
ifeq status, 1
call describe.here # The procedure does not QUIT...
quit # ... so QUIT explicitly
fin
ifnear arg2
ifkey message # If the object to be describe is the message...

call read # ... just call the code for READ.
fin
describe arg2 # Otherwise give long object description
quit

fin

	Table of Contents
	Game Specification
	Style and Terminology
	Program structure
	Player vocabulary
	Objects
	Game initialisation
	The main loop – house-keeping
	Named procedure declaration
	The main loop – player input
	Generalised error handling
	Location-specific code
	Verb-specific code
	More actions
	Finishing it off

